Studying Design Aspects for Social Robots Using a Generic Gesture Method

  • Greet Van de PerreEmail author
  • Albert De Beir
  • Hoang-Long Cao
  • Pablo Gómez Esteban
  • Dirk Lefeber
  • Bram Vanderborght


Since social robots are aimed to interact and communicate with humans in a natural way and operate in our daily environment, their design should be adapted to this. Although many social robots are for that reason more or less based on the human model, the exact morphology of the robot depends on their specific application. In this paper, we propose a novel methodology to study the influence of different design aspects, based on a generic gesture method. The gesture method was developed to overcome the difficulties in transferring gestures to different robots, providing a solution for the correspondence problem. A small set of morphological information, inputted by the user, is used to evaluate the generic framework of the software at runtime. Therefore, gestures can be calculated fast and easy for a desired robot configuration. By generating a set of gestures for different morphologies, the importance of specific joints and their influence on a series of postures and gestures can be studied. The gesture method proves its usefulness in the design process of social robots by providing an impression of the necessary amount of complexity needed for a specified task, and can give interesting insights in the required joint angle range. In this paper, this design methodology is illustrated by using the virtual model of the robot Probo.


Upper body design Generic gesture method Affective motions Gestures 


Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


Greet Van de Perre is funded by the Fund for Scientific Research (FWO), Flanders [Grant No. 11F2315N]. This work is partially funded by the European Commission 7th Framework Program as a part of the project DREAM [Grant No. 611391].


  1. 1.
    Breazeal C, Takanishi A, Kobayashi T (2008) Social robots that interact with people. In: Siciliano B, Khatib O (eds) Springer handbook of robotics. Springer, Berlin, pp 1349–1369CrossRefGoogle Scholar
  2. 2.
    Hirai K, Hirose M, Haikawa Y, Takenaka T (1998) The development of Honda humanoid robot. In: IEEE international conference on robotics and automation (ICRA 1998), vol 2, pp 1321–1326Google Scholar
  3. 3.
    Albers A, Brudniok S, Ottnad J, Sauter C, Sedchaicharn K (2006) Upper body of a new humanoid robot: the design of ARMAR III. In: 2006 6th IEEE-RAS international conference on humanoid robots. IEEE, pp 308–313Google Scholar
  4. 4.
    Ogura Y, Aikawa H, Shimomura K, Kondo H, Morishima A, Lim H, Takanishi A (2006) Development of a new humanoid robot WABIAN-2. In: IEEE international conference on robotics and automation (ICRA 2006), pp 76– 81Google Scholar
  5. 5.
    Tsagarakis NG, Metta G, Sandini G, Vernon D, Beira R, Becchi F, Righetti L, Santos-Victor J, Ijspeert AJ, Carrozza MC et al (2007) iCub: the design and realization of an open humanoid platform for cognitive and neuroscience research. Adv Robot 21(10):1151–1175CrossRefGoogle Scholar
  6. 6.
    Stasse O, Flayols T, Budhiraja R, Giraud-Esclasse K, Carpentier J, Del Prete A, Soueres P, Mansard N, Lamiraux F, Laumond JP et al (2017) TALOS: a new humanoid research platform targeted for industrial applicationsGoogle Scholar
  7. 7.
    Itoh K, Miwa H, Matsumoto M, Zecca M, Takanobu H, Roccella S, Carrozza M, Dario P, Takanishi, A (2004) Various emotional expressions with emotion expression humanoid robot WE-4RII. In: IEEE technical exhibition based conference on robotics and automation, pp 35–36Google Scholar
  8. 8.
    Ishiguro H, Ono T, Imai M, Maeda T, Kanda T, Nakatsu R (2001) Robovie: an interactive humanoid robot. Ind Robot Int J 28(6):498–504CrossRefGoogle Scholar
  9. 9.
    Park IW, Kim JY, Lee J, Oh JH (2005) Mechanical design of humanoid robot platform KHR-3 (KAIST humanoid robot 3: HUBO). In: 2005 5th IEEE-RAS international conference on humanoid robots. IEEE, pp 321–326Google Scholar
  10. 10.
    Gouaillier D, Hugel V, Blazevic P, Kilner C, Monceaux J, Lafourcade P, Marnier B, Serre J, Maisonnier B (2009) Mechatronic design of NAO humanoid. In: IEEE international conference on robotics and automation, 2009. ICRA’09. IEEE, pp 769–774Google Scholar
  11. 11.
    Parmiggiani A, Luca F, Scalzo A, Sureshbabu AV, Randazzo M, Maggiali M, Pattacini U, Lehmann H, Tikhanoff V, Domenichelli D, Cardellino A, Congiu P, Pagnin A, Cingolani R, Natale L, Metta G (2017) The design and validation of the R1 personal humanoid. In: IEEE/RSJ international conference on intelligent robots and systems (IROS)Google Scholar
  12. 12.
    Asfour T, Schill J, Peters H, Klas C, Bücker J, Sander C, Schulz S, Kargov A, Werner T, Bartenbach V (2013) Armar-4: a 63 DOF torque controlled humanoid robot. In: 2013 13th IEEE-RAS international conference on humanoid robots (humanoids). IEEE, pp 390–396Google Scholar
  13. 13.
    Van de Perre G, Van Damme M, Lefeber D, Vanderborght B (2015) Development of a generic method to generate upper-body emotional expressions for different social robots. Adv Robot 29(9):59–609Google Scholar
  14. 14.
    Van de Perre G, De Beir A, Cao HL, Esteban PG, Lefeber D, Vanderborght B (2016) Reaching and pointing gestures calculated by a generic gesture system for social robots. Robot Auton Syst 83:32–43CrossRefGoogle Scholar
  15. 15.
    Van de Perre G, De Beir A, Cao HL, Esteban PG, Lefeber D, Vanderborght B (2017) Generic method for generating blended gestures and mood expressions for social robots. Auton Robots 42:569–580Google Scholar
  16. 16.
    Kadaba MP, Ramakrishnan H, Wootten M (1990) Measurement of lower extremity kinematics during level walking. J Orthop Res 8(3):383–392CrossRefGoogle Scholar
  17. 17.
    Sciavicco L (2009) Robotics: modelling, planning and control. Springer, BerlinGoogle Scholar
  18. 18.
    Drexler DA, Harmati I (2012) Joint constrained differential inverse kinematics algorithm for serial manipulators. Period Polytech Electr Eng Comput Sci 56(4):95Google Scholar
  19. 19.
    Klein CA, Blaho BE (1987) Dexterity measures for the design and control of kinematically redundant manipulators. Int J Robot Res 6(2):72–83CrossRefGoogle Scholar
  20. 20.
    Xu J, Broekens J, Hindriks K, Neerincx MA (2013) The relative importance and interrelations between behavior parameters for robots’ mood expression. In: 2013 humaine association conference on affective computing and intelligent interaction (ACII). IEEE, pp 558–563Google Scholar
  21. 21.
    Amaya K, Bruderlin A, Calvert T (1996) Emotion from motion. In: Graphics interface, vol 96. Toronto, pp 222–229Google Scholar
  22. 22.
    Pelachaud C (2009) Studies on gesture expressivity for a virtual agent. Speech Commun 51(7):630–639CrossRefGoogle Scholar
  23. 23.
    Yamaguchi A, Yano Y, Doki S, Okuma S (2006) A study of emotional motion description by motion modification and adjectival expressions. In: IEEE conference on cybernetics and intelligent systems 2006, pp 1–6Google Scholar
  24. 24.
    Lin YH, Liu CY, Lee HW, Huang SL, Li TY (2009) Evaluating emotive character animations created with procedural animation. In: Ruttkay Z, Kipp M, Nijholt A, Vilhjálmsson HH (eds) Intelligent virtual agents. Springer, Berlin, pp 308–315CrossRefGoogle Scholar
  25. 25.
    Goris K, Saldien J, Vanderborght B, Lefeber D (2011) Mechanical design of the huggable robot probo. Int J Humanoid Robot 8(3):481–511CrossRefGoogle Scholar
  26. 26.
    Saldien J, Goris K, Vanderborght B, Vanderfaeilli J, Lefeber D (2010) Expressing emotions with the huggable robot probo. Int J Soci Robot Spec Issue Soc Accept HRI 2(4):377–389CrossRefGoogle Scholar
  27. 27.
    Siciliano B, Khatib O (2008) Springer handbook of robotics. Springer, New YorkCrossRefzbMATHGoogle Scholar
  28. 28.
    Jeong S, Santos KD, Graca S, O’Connell B, Anderson L, Stenquist N, Fitzpatrick K, Goodenough H, Logan D, Weinstock P, et al (2015) Designing a socially assistive robot for pediatric care. In: Proceedings of the 14th international conference on interaction design and children. ACM, pp 387–390Google Scholar
  29. 29.
    Kleinsmith A, De Silva PR, Bianchi-Berthouze N (2006) Cross-cultural differences in recognizing affect from body posture. Interact Comput 18(6):1371–1389CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Robotics and Multibody Mechanics Research GroupVrije Universiteit BrusselBrusselsBelgium
  2. 2.Flexible Assembly Flanders MakeLouvainBelgium

Personalised recommendations