Skip to main content

Evaluating the Child–Robot Interaction of the NAOTherapist Platform in Pediatric Rehabilitation

Abstract

NAOTherapist is a cognitive robotic architecture whose main goal is to develop non-contact upper-limb rehabilitation sessions autonomously with a social robot for patients with physical impairments. In order to achieve a fluent interaction and an active engagement with the patients, the system should be able to adapt by itself in accordance with the perceived environment. In this paper, we describe the interaction mechanisms that are necessary to supervise and help the patient to carry out the prescribed exercises correctly. We also provide an evaluation focused on the child-robot interaction of the robotic platform with a large number of schoolchildren and the experience of a first contact with three pediatric rehabilitation patients. The results presented are obtained through questionnaires, video analysis and system logs, and have proven to be consistent with the hypotheses proposed in this work.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. Video of the NAOTherapist use case: https://youtu.be/75xb39Q8QEg.

  2. Online videos of the evaluations in the HUVR:

    Patient A: https://youtu.be/9n9nll28rME.

    Patient B: https://youtu.be/77a20MzLVwQ.

    Patient C: https://youtu.be/kV-_b-sd54I.

References

  1. Alcázar V, Guzmán C, Prior D, Borrajo D, Castillo L, Onaindia E (2010) PELEA: planning, learning and execution architecture. In: Proceedings of the 28th workshop of the UK planning and scheduling special interest group (PlanSIG)

  2. Boccanfuso L, O’Kane JM (2011) Charlie : an adaptive robot design with hand and face tracking for use in autism therapy. Int J Soc Robot 3(4):337–347. doi:10.1007/s12369-011-0110-2

    Article  Google Scholar 

  3. Borggraefe I, Kiwull L, Schaefer JS, Koerte I, Koerte I, Blaschek a, Meyer-Heim a, Heinen F (2010) Sustainability of motor performance after robotic-assisted treadmill therapy in children: an open, non-randomized baseline-treatment study. Eur J Phys Rehabil Med 46(2):125–131

    Google Scholar 

  4. Burgar CG, Lum PS, Shor PC, Van der Loos HM (2000) Development of robots for rehabilitation therapy: the Palo Alto VA/Stanford experience. J Rehabil Res Dev 37(6):663–674

    Google Scholar 

  5. Calderita VL, Manso JL, Bustos P, Suárez-Mejías C, Fernández F, Bandera A (2014) THERAPIST: towards an autonomous socially interactive robot for motor and neurorehabilitation therapies for children. JMIR Rehabil Assist Technol (JRAT) 1(1):e1. doi:10.2196/rehab.3151

    Google Scholar 

  6. Castelli E (2011) Robotic movement therapy in cerebral palsy. Dev Med Child Neurol 53(6):481–481. doi:10.1111/j.1469-8749.2011.03987.x

    Article  Google Scholar 

  7. Yk Choe, Jung HT, Baird J, Grupen RA (2013) Multidisciplinary stroke rehabilitation delivered by a humanoid robot: interaction between speech and physical therapies. Aphasiology 27(3):252–270. doi:10.1080/02687038.2012.706798

    Article  Google Scholar 

  8. Dehkordi PS, Moradi H, Mahmoudi M, Pouretemad HR (2015) The design, development, and deployment of roboparrot for screening autistic children. Int J Soc Robot 7(4):513–522. doi:10.1007/s12369-015-0309-8

    Article  Google Scholar 

  9. Drubicki M, Rusek W, Snela S, Dudek J, Szczepanik M, Zak E, Durmala J, Czernuszenko A, Bonikowski M, Sobota G (2013) Functional effects of robotic-assisted locomotor treadmill thearapy in children with cerebral palsy. J Rehabil Med Off J UEMS Eur Board Phys Rehabil Med 45(4):358–363. doi:10.2340/16501977-1114

    Google Scholar 

  10. Dubowsky S, Genot F, Godding S, Kozono H, Skwersky A, Yu H, Yu LS (2000) Pamm-a robotic aid to the elderly for mobility assistance and monitoring: a helping-hand for the elderly. In: Proceedings. ICRA’00. IEEE international conference on robotics and automation, vol 1, 2000. IEEE, pp 570–576

  11. Eriksson J, Mataric MJ, Winstein C (2005) Hands-off assistive robotics for post-stroke arm rehabilitation. In: Proceedings of the 9th international conference on rehabilitation robotics (ICORR). IEEE, pp 21–24

  12. Fasola J, Mataric M (2010) Robot exercise instructor: a socially assistive robot system to monitor and encourage physical exercise for the elderly. In: RO-MAN, 2010. IEEE, pp 416–421. doi:10.1109/ROMAN.2010.5598658

  13. Feil-Seifer D, Mataric MJ (2005) Defining socially assistive robotics. In: Proceedings of the 9th international conference on rehabilitation robotics (ICORR). IEEE, pp 465–468

  14. Fong T, Nourbakhsh I, Dautenhahn K (2003) A survey of socially interactive robots. Robot Auton Syst 42(3):143–166

    Article  MATH  Google Scholar 

  15. Fox M, Long D (2003) PDDL2.1: an extension to PDDL for expressing temporal planning domains. J Artif Intell Res (JAIR) 20(1):61–124

    MATH  Google Scholar 

  16. Fridin M (2014) Kindergarten social assistive robot: first meeting and ethical issues. Comput Hum Behav 30:262–272. doi:10.1016/j.chb.2013.09.005

    Article  Google Scholar 

  17. Fridin M, Belokopytov M (2014) Robotics agent coacher for cp motor function (rac cp fun). Robotica 32:1265–1279. doi:10.1017/S026357471400174X

    Article  Google Scholar 

  18. Garcia N, Sabater-Navarro J, Gugliemeli E, Casals A (2011) Trends in rehabilitation robotics. Med Biol Eng Comput 49(10):1089–1091. doi:10.1007/s11517-011-0836-x

    Article  Google Scholar 

  19. Ghallab M, Nau D, Traverso P (2004) Automated planning: theory and practice. Elsevier

  20. Gonzlez JC, Pulido JC, Fernndez F (2016) A three-layer planning architecture for the autonomous control of rehabilitation therapies based on social robots. Cogn Syst Res. doi:10.1016/j.cogsys.2016.09.003

    Google Scholar 

  21. Graf B, Reiser U, Hägele M, Mauz K, Klein P (2009) Robotic home assistant care-o-bot®3 - product vision and innovation platform. In: Workshop on advanced robotics and its social impacts (ARSO), 2009. IEEE, pp 139–144. doi:10.1109/ARSO.2009.5587059

  22. Hoffmann J (2003) The metric-FF planning system: translating ”ignoring delete lists” to numeric state variables. J Artif Intell Res (JAIR) 20(1):291–341

    MATH  Google Scholar 

  23. Kahn LE, Averbuch M, Rymer WZ, Reinkensmeyer DJ, D P (2001) Comparison of robot-assisted reaching to free reaching in promoting recovery from chronic stroke. In: Proceedings 7th international conference on rehabilitation robotics in integration of assistive technology in the information age. IOS Press, pp 39–44

  24. Kozima H, Michalowski MP, Nakagawa C (2008) Keepon. Int J Soc Robot 1(1):3–18. doi:10.1007/s12369-008-0009-8

    Article  Google Scholar 

  25. Lacey G, Dawson-Howe KM (1998) The application of robotics to a mobility aid for the elderly blind. Robot Auton Syst 23(4):245–252. doi:10.1016/S0921-8890(98)00011-6 intelligent Robotics Systems - SIRS’97

    Article  Google Scholar 

  26. Leite I, Martinho C, Paiva A (2013) Social robots for long-term interaction: a survey. Int J Soc Robot 5(2):291–308. doi:10.1007/s12369-013-0178-y

    Article  Google Scholar 

  27. Manso L, Bachiller P, Bustos P, Núñez P, Cintas R, Calderita L (2010) RoboComp: A tool-based robotics framework. In: Ando N, Balakirsky S, Hemker T, Reggiani M, von Stryk O (eds) Simulation, modeling, and programming for autonomous robots, lecture notes in computer science, vol 6472. Springer, Berlin, pp 251–262. doi:10.1007/978-3-642-17319-6_25

  28. Manso LJ, Calderita LV, Bustos P, García J, Martínez M, Fernández F, Garcés AR, Bandera A (2014) A general-purpose architecture to control mobile robots. In: Proceedings of the 15th workshop of physical agents (WAF 2014). León, pp 105–116

  29. Mataric M, Eriksson J, Feil-Seifer D, Winstein C (2007) Socially assistive robotics for post-stroke rehabilitation. J NeuroEng Rehabil 4(1):5. doi:10.1186/1743-0003-4-5

    Article  Google Scholar 

  30. McMurrough C, Ferdous S, Papangelis A, Boisselle A, Heracleia FM (2012) A survey of assistive devices for cerebral palsy patients. In: Proceedings of the 5th international conference on PErvasive technologies related to assistive environments. ACM, New York, PETRA ’12, pp 17:1–17:8. doi:10.1145/2413097.2413119

  31. Meyer-Heim A, van Hedel HJ (2013) Robot-assisted and computer-enhanced therapies for children with cerebral palsy: current state and clinical implementation. Semin Pediatr Neurol 20(2):139–145. doi:10.1016/j.spen.2013.06.006 update on Cerebral Palsy: Diagnostics, Therapies and the Ethics of it All

    Article  Google Scholar 

  32. Nalin M, Baroni I, Sanna A (2012) A motivational robot companion for children in therapeutic setting. In: IROS 2012

  33. Nau D, Au TC, Ilghami O, Kuter U, Murdock JW, Wu D, Yaman F (2003) SHOP2: an HTN planning system. J Artif Intell Res (JAIR) 20:379–404

    MATH  Google Scholar 

  34. Ni D, Song A, Tian L, Xu X, Chen D (2015) A walking assistant robotic system for the visually impaired based on computer vision and tactile perception. Int J Soc Robot 7(5):617–628. doi:10.1007/s12369-015-0313-z

    Article  Google Scholar 

  35. Perry J, Rosen J, Burns S (2007) Upper-limb powered exoskeleton design. IEEE/ASME Trans Mechatron 12(4):408–417. doi:10.1109/TMECH.2007.901934

    Article  Google Scholar 

  36. Pulido JC, González JC, González-Ferrer A, García J, Fernández F, Bandera A, Bustos P, Suárez C (2014) Goal-directed generation of exercise sets for upper-limb rehabilitation. In: Proceedings of knowledge engineering for planning and scheduling workshop (KEPS). ICAPS, pp 38–45

  37. Song A, Wu C, Ni D, Li H, Qin H (2016) One-therapist to three-patient telerehabilitation robot system for the upper limb after stroke. Int J Soc Robot 8(2):319–329. doi:10.1007/s12369-016-0343-1

    Article  Google Scholar 

  38. Suárez Mejías C, Echevarría C, Núñez P, Manso L, Bustos P, Leal S, Parra C (2013) Ursus: a robotic assistant for training of children with motor impairments. In: Converging clinical and engineering research on neurorehabilitation, biosystems and biorobotics, vol 1. Springer, Berlin, pp 249–253. doi:10.1007/978-3-642-34546-3_39

  39. Tapus A, Mataric M, Scasselati B (2007) Socially assistive robotics [grand challenges of robotics]. IEEE Robot Autom Mag 14(1):35–42. doi:10.1109/MRA.2007.339605

    Article  Google Scholar 

  40. Wainer J, Dautenhahn K, Robins B, Amirabdollahian F (2013) A pilot study with a novel setup for collaborative play of the humanoid robot kaspar with children with autism. Int J Soc Robot 6(1):45–65. doi:10.1007/s12369-013-0195-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Carlos Pulido.

Appendices

Children’s Questionnaire

  1. Q1.

    Was it easy to understand what to do with the robot?

  2. Q2.

    Do you think the robot is alive?

  3. Q3.

    Do you think the robot was gazing at you?

  4. Q4.

    Did you feel overwhelmed when the robot talked to you?

  5. Q5.

    Do you think the robot speaks too much?

  6. Q6

    Do you think the robot has feelings?

  7. Q7.

    Choose five adjectives to describe the robot

  8. Q8.

    What name would you give to the robot?

  9. Q9.

    How old do you think the robot is?

  10. Q10.

    Would you like to have this robot at home?

  11. Q11.

    Would you like to be treated by the robot?

  12. Q12.

    Do you think the robot can see you?

  13. Q13a.

    Do you think the robot can hear you?

  14. Q13b.

    Do you think the robot is glad when you play together?

  15. Q13c.

    Would you like to do more exercises with the robot?

  16. Q13d.

    Which games would you want to play with the robot?

  17. Q15.

    Did the robot correct an actual correct pose?

  18. Q16.

    Which exercise did you like most?

  19. Q17.

    Which exercise was the most difficult?

  20. Q18a.

    Did you understand the descriptions of the exercises?

  21. Q18b.

    Were the exercises tiring?

  22. Q18c.

    Did the lights of the eyes help you to do the exercises?

  23. Q19a.

    Were the exercises boring?

  24. Q19b.

    Why?

Observers and Experts’ Questionnaire

  1. Q1.

    Did the child understand what to do?

  2. Q2.

    Are the movements of the robot natural?

  3. Q3.

    Did the child perform the movements naturally?

  4. Q4.

    Was the child overwhelmed during the session?

  5. Q5.

    Did the robot correct an actual correct pose?

  6. Q6.

    Was the session carried out fluently?

  7. Q7.

    Was the child very committed to the session?

  8. Q8.

    Was this experience beneficial for the child?

  9. Q9.

    Did the child make a great effort to finish the session?

  10. Q10.

    Is this system a useful tool for physiotherapy?

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pulido, J.C., González, J.C., Suárez-Mejías, C. et al. Evaluating the Child–Robot Interaction of the NAOTherapist Platform in Pediatric Rehabilitation. Int J of Soc Robotics 9, 343–358 (2017). https://doi.org/10.1007/s12369-017-0402-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12369-017-0402-2

Keywords

  • Social human–robot interaction
  • Rehabilitation robotics
  • Socially assistive robotics
  • Control architectures and programming
  • Automated planning