Abstract
Using a hypothetical graph, Masahiro Mori proposed in 1970 the relation between the human likeness of robots and other anthropomorphic characters and an observer’s affective or emotional appraisal of them. The relation is positive apart from a U-shaped region known as the uncanny valley. To measure the relation, we previously developed and validated indices for the perceptual-cognitive dimension humanness and three affective dimensions: interpersonal warmth, attractiveness, and eeriness. Nevertheless, the design of these indices was not informed by how the untrained observer perceives anthropomorphic characters categorically. As a result, scatter plots of humanness vs. eeriness show the stimuli cluster tightly into categories widely separated from each other. The present study applies a card sorting task, laddering interview, and adjective evaluation (\(N=30\)) to revise the humanness, attractiveness, and eeriness indices and validate them via a representative survey (\(N = 1311\)). The revised eeriness index maintains its orthogonality to humanness (\(r=.04\), \(p=.285\)), but the stimuli show much greater spread, reflecting the breadth of their range in human likeness and eeriness. The revised indices enable empirical relations among characters to be plotted similarly to Mori’s graph of the uncanny valley. Accurate measurement with these indices can be used to enhance the design of androids and 3D computer animated characters.
This is a preview of subscription content, access via your institution.





Notes
The cinematic production of narrative computer animation by means of a videogame or other real-time graphics engine.
The value is the mean of 12 Cronbach’s \(\alpha \)s, one for each character.
References
Arkes HR (1991) Costs and benefits of judgment errors: implications for debiasing. Psychol Bull 110(3):486–498. doi:10.1037/0033-2909.110.3.486
Bartneck C, Kulić D, Croft E, Zoghbi S (2009) Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. Int J Soc Robot 1(1):71–81. doi:10.1007/s12369-008-0001-3
Becker-Asano C, Ogawa K, Nishio S, Ishiguro H (2010) Exploring the uncanny valley with Geminoid HI-1 in a real-world application. In: Blashki K (ed) Proceedings of IADIS International Conference Interfaces and Human Computer Interaction. IADIS Press, Lisbon, Portugal, pp 121–128
Bentler PM (1969) Semantic space is (approximately) bipolar. J Psychol 71(1):33–40. doi:10.1080/00223980.1969.10543067
Bentler PM (1990) Comparative fit indexes in structural models. Psychol Bull 170(2):238–246. doi:10.1037/0033-2909.107.2.238
Burleigh TJ, Schoenherr JR (2015) A reappraisal of the uncanny valley: categorical perception or frequency-based sensitization? Front Psychol 5(1488):1–19. doi:10.3389/fpsyg.2014.01488
Chattopadhyay D, MacDorman KF (2016) Familiar faces rendered strange: Why inconsistent realism drives characters into the uncanny valley. J Vis, 16(11):7, 1–25
Cheetham M, Pavlovic I, Jordan N, Suter P, Jäncke L (2013) Category processing and the human likeness dimension of the uncanny valley hypothesis: eye-tracking data. Front Psychol 4(108):1–12. doi:10.3389/fpsyg.2013.00108
Cheetham M, Suter P, Jäncke L (2011) The human likeness dimension of the “uncanny valley hypothesis”: behavioral and functional MRI findings. Front Hum Neurosci 5(125):1–14. doi:10.3389/fnhum.2011.00126
Chin WW, Todd PA (1995) On the use, usefulness, and ease of use of structural equation modeling in MIS research: a note of caution. MIS Q 19(2):237–246. doi:10.2307/249690
Dunning D, Johnson K, Ehrlinger J, Kruger J (2003) Why people fail to recognize their own incompetence. Curr Dir Psychol Sci 12(3):83–87. doi:10.1111/1467-8721.01235
Feldman NH, Griffiths TL, Morgan JL (2009) The influence of categories on perception: explaining the perceptual magnet effect as optimal statistical inference. Psychol Rev 116(4):752–782. doi:10.1037/a0017196
Fox CR, Clemen RT (2005) Subjective probability assessment in decision analysis: partition dependence and bias toward the ignorance prior. Manag Sci 51(9):1417–1432. doi:10.1287/mnsc.1050.0409
Gärling T (1976) A multidimensional scaling and semantic differential technique study of the perception of environmental settings. Scand J Psychol 17(1):323–332. doi:10.1111/j.1467-9450.1976.tb00248.x
Gefen D, Straub D, Boudreau M (2000) Structural equation modeling and regression: guidelines for research practice. Commun Assoc Inf Syst 4(7):1–79
Gerbing DW, Hamilton JG (1996) Viability of exploratory factor analysis as a precursor to confirmatory factor analysis. Struct Equ Model 3(1):62–72. doi:10.1080/10705519609540030
Goetz J, Kiesler S, Powers A (2003) Matching robot appearance and behavior to tasks to improve human-robot cooperation. In: Proceedings of the 12th IEEE International Workshop on Robot and Human Interactive Communication. IEEE Press, Piscataway, pp 55–60. doi:10.1109/ROMAN.2003.1251796
Hanson D (2005) Expanding the aesthetic possibilities for humanoid robots. In: Proceedings of the views of the uncanny valley workshop. IEEE-RAS International Conference on Humanoid Robots. December 5, Tsukuba, Japan
Harnad S (1987) Category induction and representation. In: Harnad S (ed) Categorical perception: the groundwork of cognition. Cambridge University Press, New York, pp 535–565
Hashimoto T, Nakane H, Kobayashi H (2013) Android patient robot simulating depressed patients for diagnosis training of psychiatric trainees. In: Proceedings of the Second IEEE International Conference on Robot, Vision and Signal Processing. IEEE Press, Piscataway, pp 247–252. doi:10.1109/RVSP.2013.63
Ho C-C, MacDorman KF (2010) Revisiting the uncanny valley theory: developing and validating an alternative to the Godspeed indices. Comput Hum Behav 26(6):1508–1518. doi:10.1016/j.chb.2010.05.015
Ho C-C, MacDorman KF, Pramono ZAD (2008) Human emotion and the uncanny valley: A GLM, MDS, and isomap analysis of robot video ratings. In: Proceedings of the Third ACM/IEEE International Conference on Human-Robot Interaction (pp. 169–176). ACM, New York. doi:10.1145/1349822.1349845
Kätsyri J, Förger K, Mäkäräinen M, Takala T (2015) A review of empirical evidence on different uncanny valley hypotheses: support for perceptual mismatch as one road to the valley of eeriness. Front Psychol 6(390):1–16. doi:10.3389/fpsyg.2015.00390
Kikutani M, Roberson D, Hanley JR (2010) Categorical perception for unfamiliar faces: the effect of covert and overt face learning. Psychol Sci 21(6):865–872. doi:10.1177/0956797610371964
Kruger J, Dunning D (1999) Unskilled and unaware of it: how difficulties in recognizing one’s own incompetence lead to inflated self-assessments. J Personal Soc Psychol 77(6):1121–1134. doi:10.1037/0022-3514.77.6.1121
Looser CE, Wheatley T (2010) The tipping point of animacy: how, when, and where we perceive life in a face. Psychol Sci 21(12):1854–1862. doi:10.1177/0956797610388044
Lorr M, Wunderlich RA (1988) A semantic differential mood scale. J Clin Psychol 44(1):33–36
MacDorman KF, Chattopadhyay D (2016) Reducing consistency in human realism increases the uncanny valley effect; increasing category uncertainty does not. Cognition 146:190–205. doi:10.1016/j.cognition.2015.09.019
MacDorman KF, Entezari SO (2015) Individual differences predict sensitivity to the uncanny valley. Interact Stud 16(2):141–172. doi:10.1075/is.16.2.01mac
MacDorman KF, Green RD, Ho C-C, Koch C (2009) Too real for comfort: Uncanny responses to computer generated faces. Comput Hum Behav 25(3):695–710. doi:10.1016/j.chb.2008.12.026
MacDorman KF, Ishiguro H (2006a) The uncanny advantage of using androids in social and cognitive science research. Interact Stud 7(3):297–337. doi:10.1075/is.7.3.03mac
MacDorman KF, Ishiguro H (2006b) Opening Pandora’s uncanny box: reply to commentaries on the uncanny advantage of using androids in social and cognitive science research. Interact Stud 7(3):361–368. doi:10.1075/is.7.3.10mac
MacDorman KF, Vasudevan SK, Ho C-C (2009) Does Japan really have robot mania? Comparing attitudes by implicit and explicit measures. AI Soc 23(4):485–510. doi:10.1007/s00146-008-0181-2
Macrae CN, Bodenhausen GV (2000) Social cognition: thinking categorically about others. Annu Rev Psychol 51(1):93–120. doi:10.1146/annurev.psych.51.1.93
Mangan BB (2015) The uncanny valley as fringe experience. Interact Stud 16(2):193–199. doi:10.1075/is.16.2.05man
Mathur MB, Reichling DB (2016) Navigating a social world with robot partners: a quantitative cartography of the uncanny valley. Cognition 146:22–32. doi:10.1016/j.cognition.2015.09.008
Meah LFS, Moore RK (2014) The uncanny valley: a focus on misaligned cues. In: Beetz M, Johnston B, Williams M-A (eds) Social robotics, LNAI, vol 8755. Springer, Cham, pp 256–265. doi:10.1007/978-3-319-11973-1_26
Michalowski MP, Sabanovic S, Simmons R (2006) A spatial model of engagement for a social robot. In: Proceedings of the Ninth IEEE International Workshop on Advanced Motion Control. IEEE Press, Piscataway, pp 762–767. doi:10.1109/AMC.2006.1631755
Misselhorn C (2009) Empathy with inanimate objects and the uncanny valley. Minds Mach 19(3):345–459. doi:10.1007/s11023-009-9158-2
Mitchell WJ, Szerszen Sr, KA, Lu AS, Schermerhorn PW, Scheutz M, MacDorman KF (2011). A mismatch in the human realism of face and voice produces an uncanny valley. i-Perception, 2(1), 10–12. doi:10.1068/i0415
Moore RK (2012) A Bayesian explanation of the ‘uncanny valley’ effect and related psychological phenomena. Sci Rep 2(864):1–5. doi:10.1038/srep00864
Mori M (2012) The uncanny valley. IEEE Robotics and Automation (trans: MacDorman KF, Kageki N) 19(2), 98–100 doi:10.1109/MRA.2012.2192811 (Original work published in 1970)
Nomura T, Kanda T, Suzuki T, Kato K (2004) Psychology in human-robot communication: an attempt through investigation of negative attitudes and anxiety toward robots. In: Proceedings of the 13th IEEE International Workshop on Robot and Human Interactive Communication. IEEE Press, Piscataway, pp 35–40
Nomura T, Kanda T (2016) Rapport–expectation with a robot scale. Int J Soc Robot (8)1: 21–30. doi:10.1007/s12369-015-0293-z
Prakash A, Rogers WA (2015) Why some humanoid faces are perceived more positively than others: effects of humanlikeness and task. Int J Soc Robot 7(2):309–0331. doi:10.1007/s12369-014-0269-4
Pronin E (2007) Perception and misperception of bias in human judgment. Trends Cognit Sci 11(1):37–43. doi:10.1016/j.tics.2006.11.001
Pronin E, Lin DY, Ross L (2002) The bias blind spot: perceptions of bias in self versus others. Personal Soc Psychol Bull 28(3):369–381. doi:10.1177/0146167202286008
Ramey CH (2005) The uncanny valley of similarities concerning abortion, baldness, heaps of sand, and humanlike robots. In: Proceedings of the Views of the Uncanny Valley Workshop. IEEE-RAS International Conference on Humanoid Robots. December 5, Tsukuba, pp 8–13
Riek LD, Rabinowitch TC, Chakrabarti B, Robinson P (2009) Empathizing with robots: fellow feeling along the anthropomorphic spectrum. In: Proceedings of the Third International Conference on Affective Computing and Intelligent Interaction and Workshops. Amsterdam, pp 1–6, September 10–12. doi:10.1109/ACII.2009.5349423
Rosenberg S, Nelson C, Vivekananthan P (1968) A multidimensional approach to the structure of personality impressions. J Personal Soc Psychol 97(4):283–294. doi:10.1037/h0026086
Rugg G, McGeorge P (1997) The sorting techniques: a tutorial paper on card sorts, picture sorts and item sorts. Expert Syst 12(4):80–93. doi:10.1111/1468-0394.00045
Seyama J, Nagayama RS (2007) The uncanny valley: the effect of realism on the impression of artificial human faces. Presence 16(4):337–351. doi:10.1162/pres.16.4.337
ter Hofstede F, Audenaert A, Steenkamp J-BEM, Wedel M (1998) An investigation into the association pattern techniques as a quantitative approach to measuring means-end chains. Int J Res Mark 15(1):37–50. doi:10.1016/S0167-8116(97)00029-3
Tondu B, Bardou N (2011) A new interpretation of Mori’s uncanny valley for future humanoid robots. Int J Robot Autom 26(3):337–348. doi:10.2316/Journal.206.2011.3.206-3348
Turkle S (2007) Authenticity in the age of digital companions. Interact Stud 8(3):501–517. doi:10.1075/is.8.3.11tur
Uekermann F, Herrmann A, Wentzel D, Landwehr JR (2008) The influence of stimulus ambiguity on category and attitude formation. Rev Manag Sci 4(1):33–52. doi:10.1007/s11846-009-0034-5
van Schuur WH, Kiers HAL (1994) Why factor analysis often is the incorrect model for analyzing bipolar concepts and what model to use instead. Appl Psychol Meas 18(2):97–110. doi:10.1177/014662169401800201
Vanden Abeele P (1992) A means-end study of dairy consumption motivation. Report for the European Commission, EC Regulation 1000/90–43 ST
Vlachos E, Scharfe H (2015) An open-ended approach to evaluating android faces. In: Proceedings of the 24th IEEE International Symposium on Robot and Human Interactive Communication. IEEE Press, Piscataway, pp 746–751
Walters M, Marcos S, Syrdal DS, Dautenhahn K (2013) An interactive game with a robot: People’s perceptions of robot faces and a gesture-based user interface. In: Proceedings of the Sixth International Conference on Advanced Computer-human Interactions. IARIA Press, Lisbon, Portugal, pp 123–128
Yamada Y, Kawabe T, Ihaya K (2013) Categorization difficulty is associated with negative evaluation in the “uncanny valley” phenomenon. Jpn Psychol Res 55(1):20–32. doi:10.1111/j.1468-5884.2012.00538.x
Yamauchi T (2005) Labeling bias and categorical induction: generative aspects of category information. J Exp Psychol 31(3):538–553. doi:10.1037/0278-7393.31.3.538
Acknowledgments
The authors would like to thank Debaleena Chattopadhyay, Alexander Fedorikhin, Edgar Huang, Wade J. Mitchell, Himalaya Patel, and Mark Pfaff for their insightful comments on an earlier draft of the manuscript and Ryan Sukale for technical help. This research was supported by the US National Institutes of Health (P20 GM066402) and an IUPUI Signature Center.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ho, CC., MacDorman, K.F. Measuring the Uncanny Valley Effect. Int J of Soc Robotics 9, 129–139 (2017). https://doi.org/10.1007/s12369-016-0380-9
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12369-016-0380-9
Keywords
- Anthropomorphism
- Categorical perception
- Cognitive bias
- Psychometric scales
- Social perception