International Journal of Social Robotics

, Volume 8, Issue 5, pp 663–684 | Cite as

Dynamic Social Zone based Mobile Robot Navigation for Human Comfortable Safety in Social Environments



We propose an effective human comfortable safety framework enabling a mobile service robot to navigate safely and socially in social environments. The proposed framework takes human states (position, orientation, motion and hand poses) and social interaction information relative to the robot into account to model extended personal space and social interaction space, respectively, the combination of which results in a dynamic social zone (DSZ). The DSZ-based human comfortable safety framework is able to estimate an approaching goal pose of the robot for a human or a group of humans, thus allowing the robot to not only avoid but also to approach a human or a group of humans in a socially acceptable manner. The DSZ is incorporated into the robots motion planning system comprising the D* planner technique and dynamic window approach algorithm to generate motion control commands for the mobile robot. We verify the effectiveness of the proposed method through simulation and experimental results under the newly proposed human comfortable safety indices.


Human comfortable safety Socially aware robot navigation Dynamic social zone Extended personal space Social interaction space Comfortable safety indices 


  1. 1.
    Adrian B, David ST, David CR, Mari V (2014) Group comfortability when a robot approaches. In: ICSR 2014, Proceedings of the 6th international conference on social robotics, pp 44–53Google Scholar
  2. 2.
    Amaoka T, Laga H, Saito S, Nakajima M (2009) Personal space modeling for human-computer interaction. In: ICEC ’09, Proceedings of the 8th international conference on entertainment computing, pp 60–72Google Scholar
  3. 3.
    Bennewitz M, Burgard W, Cielniak G, Thrun S (2005) Learning motion patterns of people for compliant robot motion. Int J Robot Res 24:31–48CrossRefGoogle Scholar
  4. 4.
    Van den Berg J, Ming L, Manocha D (2008) Reciprocal velocity obstacles for real-time multi-agent navigation. In: Proceedings of the IEEE international conference on robotics and automation, pp 1928–1935Google Scholar
  5. 5.
    Borenstein J, Koren Y (1991) The vector field histogram-fast obstacle avoidance for mobile robots. IEEE Trans Robot Autom 7(3):278–288CrossRefGoogle Scholar
  6. 6.
    Bradski G (2000) The OpenCV Library. Dr Dobb’s Journal of Software ToolsGoogle Scholar
  7. 7.
    Carton D, Turnwald A, Wollherr D, Buss M (2013) Proactively approaching pedestrians with an autonomous mobile robot in urban environments. Exp Robot Springer Tracts Adv Robot 88:199–214CrossRefGoogle Scholar
  8. 8.
    Chernov N, Lesort C (2005) Least squares fitting of circles. J Math Imaging Vis 23(3):239–252MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chi-Pang L, Chen-Tun C, Kuo-Hung C, Li-Chen F (2011) Human-centered robot navigation-towards a harmoniously human-robot coexisting environment. IEEE Trans Robot 27(1):99–112CrossRefGoogle Scholar
  10. 10.
    Cristani M, Loris B, Giulia P, Andrea F, Diego T, Alessio DB, Gloria M, Murino V (2011) Social interaction discovery by statistical analysis of f-formations. In: The 22nd British machine vision conference, pp 23.1–23.12Google Scholar
  11. 11.
    Dautenhahn K, Walters M, Woods S, Koay KL, Nehaniv CL (2006) How may i serve you?: a robot companion approaching a seated person in a helping context. In: ACM Press, Proceeding of the 1st ACM SIGCHI/SIGART conference on human robot interaction, pp 172–179Google Scholar
  12. 12.
    Elfes A (1989) Using occupancy grids for mobile robot perception and navigation. Computer 22(6):46–57CrossRefGoogle Scholar
  13. 13.
    Fiorini P, Shillert Z (1998) Motion planning in dynamic environments using velocity obstacles. Int J Robot Res 17:760–772CrossRefGoogle Scholar
  14. 14.
    Fox D, Burgard W, Thrun S (1997) The dynamic window approach to collision avoidance. IEEE Robot Autom Mag 4(1):23–33CrossRefGoogle Scholar
  15. 15.
    Fraichard T (2007) A short paper about motion safety. In: IEEE international conference on robotics and automation, pp 1140–1145Google Scholar
  16. 16.
    Fraichard T, Asama H (2003) Inevitable collision states. A step towards safer robots? In: IEEE/RSJ international conference on intelligent robots and systems, vol 1, pp 388–393Google Scholar
  17. 17.
    Gomez JV, Mavridis N, Garrido S (2014) Fast marching solution for the social path planning problem. In: Proceedings of the IEEE international conference on robotics and automation, pp 1871–1876Google Scholar
  18. 18.
    Hall ET (1966) The hidden dimension: man’s use of space in public and private. The Bodley Head Ltd, LondonGoogle Scholar
  19. 19.
    Helbing D, Molnr P (1995) Social force model for pedestrian dynamics. Phys Rev E 51(5):4282–4286CrossRefGoogle Scholar
  20. 20.
    Herbert B, Andreas E, Tinne T, Gool LV (2008) Speeded-up robust features (SURF). Comput Vis Image Underst 110(3):346–359CrossRefGoogle Scholar
  21. 21.
    Hsu D, Kindel R, Latombe JC, Rock S (2002) Randomized kinodynamic motion planning with moving obstacles. Int J Robot Res 21(3):233–255CrossRefMATHGoogle Scholar
  22. 22.
    Kelley R, Nicolescu M, Tavakkoli A, King C, Bebis G (2008) Understanding human intentions via hidden markov models in autonomous mobile robots. In: Proceedings of the ACM/IEEE international conference on human-robot interaction, pp 367–374Google Scholar
  23. 23.
    Kendon A (1990) Conducting interaction: patterns of behavior in focused encounters. Cambridge University Press, CambridgeGoogle Scholar
  24. 24.
    Kendon A (2010) Spacing and orientation in co-present interaction. In: Esposito A (ed) Development of multimodal interfaces: active listening and synchrony. Lecture notes in computer science, vol 5967. Springer, HeidelbergGoogle Scholar
  25. 25.
    Khatib O (1985) Real-time obstacle avoidance for manipulators and mobile robots. In: Proceedings of the IEEE international conference on robotics and automation, vol 2, pp 500–505Google Scholar
  26. 26.
    Kirby R, Simmons R, Forlizzi J (2009) Companion: a constraintoptimizing method for personacceptable navigation. In: Proceedings of the IEEE international symposium on robot and human interactive communication, pp 607–612Google Scholar
  27. 27.
    Koay KL, Syrdal D, Ashgari-Oskoei M, Walters ML, Dautenhahn K (2014) Social roles and baseline proxemic preferences for a domestic service robot. Int J Soc Robot 6(4):469–488CrossRefGoogle Scholar
  28. 28.
    Kruse T, Pandey AK, Alami R, Kirsch A (2013) Human-aware robot navigation: a survey. Robot Autonom Syst 61(12):1726–1743CrossRefGoogle Scholar
  29. 29.
    Kuno Y, Sadazuka K, Kawashima M, Yamazaki K, Yamazaki A, Kuzuoka H (2007) Museum guide robot based on sociological interaction analysis. In: Proceedings of the SIGCHI conference on human factors in computing systems, pp 1191–1194Google Scholar
  30. 30.
    Kyriacos S, Joao M, Maarten VS, Shimon W, Jaebok K, Jered V, Gwenn E, Khiet T, Vanessa E, Noe PH, Ignacio PH, Rafael RV, Fernando C, Luis M, Jie S, Stavros P, Maja P, Lasse H, Marten S, Raphael K, Herve M (2015) TERESA: a socially intelligent semi-autonomous telepresence system. In: Workshop on machine learning for social robotics, IEEE international conference on robotics and automationGoogle Scholar
  31. 31.
    Ladick L, Russell C, Kohli P, Torr PS (2013) Inference methods for CRFs with co-occurrence statistics. Int J Comput Vis 103(2):213–225MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Langton SRH, Watt RJ, Bruce V (2003) Do the eyes have it? Cues to the direction of social attention. Trends Cognit Sci 4(2):50–59CrossRefGoogle Scholar
  33. 33.
    LaValle SM, Kuffner JJ Jr (2001) Randomized kinodynamic planning. Int J Robot Res 20(5):378–400CrossRefGoogle Scholar
  34. 34.
    Luber M, Spinello L, Silva J, Arras KO (2012) Socially-aware robot navigation: a learning approach. In: IEEE/RSJ international conference on intelligent robots and systems, pp 902–907Google Scholar
  35. 35.
    Maja P, Alessandro V (2014) Social signal processing. The Oxford Handbook of Affective ComputingGoogle Scholar
  36. 36.
    Moravec HP, Elfes A (1985) High resolution maps from wide angle sonar. In: Proceedings of the IEEE international conference on robotics and automation, vol 2, pp 116–121Google Scholar
  37. 37.
    Moussaid M, Perozo N, Garnier S, Helbing D, Theraulaz G (2010) The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PloS One 5(4):e10,047CrossRefGoogle Scholar
  38. 38.
    Nonaka S, Inoue K, Arai T, Mae Y (2004) Evaluation of human sense of security for coexisting robots using virtual reality. 1st report: evaluation of pick and place motion of humanoid robots. In: Proceedings of the IEEE international conference on robotics and automation, vol 3, pp 2770–2775Google Scholar
  39. 39.
    Papadakis P, Spalanzani A, Laugier C (2013) Social mapping of human-populated environments by implicit function learning. In: IEEE/RSJ international conference on intelligent robots and systems, pp 1701–1706Google Scholar
  40. 40.
    PrimeSense NITE (2011) Accessed 6 Aug 2012
  41. 41.
    Quigley M, Gerkey B, Conley K, Faust J, Foote T, Leibs J, Berger E, Wheeler R, Ng A (2009) ROS: an open-source robot operating system. In: ICRA workshop on open source software, vol 32, pp 151–170Google Scholar
  42. 42.
    Rios-Martinez J, Spalanzani A, Laugier C (2011) Understanding human interaction for probabilistic autonomous navigation using risk-rrt approach. In: IEEE/RSJ international conference on intelligent robots and systems, pp 2014–2019Google Scholar
  43. 43.
    Rios-Martinez J, Spalanzani A, Laugier C (2014) From proxemics theory to socially-aware navigation: a survey. Int J Soc Robot 7(2):137–153CrossRefGoogle Scholar
  44. 44.
    ROS support from MATLAB (2013) Accessed 8 June 2014
  45. 45.
    Rusu RB, Cousins S (2011) 3D is here: point cloud library (PCL). In: IEEE international conference on robotics and automation, pp 1–4Google Scholar
  46. 46.
    Satake S, Kanda T, Glas DF, Imai M, Ishiguro H, Hagita N (2009) How to approach humans?-strategies for social robots to initiate interaction. In: ACM/IEEE international conference on human-robot interaction, pp 109–116Google Scholar
  47. 47.
    Setti F, Russell C, Bassetti C, Cristani M (2014) F-formation detection: individuating free-standing conversational groups in images. arXiv:1409.2702
  48. 48.
    Shiomi M, Zanlungo F, Hayashi K, Kanda T (2014) Towards a socially acceptable collision avoidance for a mobile robot navigating among pedestrians using a pedestrian model. Int J Soc Robot 6(3):443–455CrossRefGoogle Scholar
  49. 49.
    Siegwart R, Nourbakhsh IR, Scaramuzza D (2011) Introduction to autonomous mobile robots. The MIT Press, CambridgeGoogle Scholar
  50. 50.
    Sisbot EA, Marin-Urias LF, Alami R, Simeon T (2007) A human aware mobile robot motion planner. IEEE Trans Robot 23(5):874–883CrossRefGoogle Scholar
  51. 51.
    Sisbot EA, Marin-Urias L, Broqure X, Sidobre D, Alami R (2010) Synthesizing robot motions adapted to human presence. Int J Soc Robot 2(3):329–343CrossRefGoogle Scholar
  52. 52.
    Stentz A (1994) The D* algorithm for real-time planning of optimal traverses. Technical Report CMU-RI-TR-94-37, The Robotics Institute, Carnegie-Mellon UniversityGoogle Scholar
  53. 53.
    Svenstrup M, Hansen ST, Andersen HJ, Bak T (2011) Adaptive human-aware robot navigation in close proximity to humans. Int J Adv Robot Syst 8(2):7–21Google Scholar
  54. 54.
    Thrun S, Bennewitz M, Burgard W, Cremers AB, Dellaert F, Fox D, Hahnel D, Rosenberg C, Roy N, Schulte J, Schulz D (1999) Minerva: a second-generation museum tour-guide robot. In: Proceedings of the IEEE international conference on robotics and automation, vol 3, pp 1999–2005Google Scholar
  55. 55.
    Torta E, Cuijpers RH, Juola JF (2013) Design of a parametric model of personal space for robotic social navigation. Int J Soc Robot 5(3):357–365CrossRefGoogle Scholar
  56. 56.
    Triebel R, Arras KO, Alami R, Beyer L, Breuers S, Chatila R, Chetouani M, Cremers D, Evers V, Fiore M, Hung H, Islas Ramirez O, Joosse M, Khambhaita H, Kucner T, Leibe B, Lilienthal A, Linder T, Lohse M, Magnusson M, Okal B, Palmieri L, Rafi U, van Rooij M, Zhang L (2015) SPENCER: a socially aware service robot for passenger guidance and help in busy airports. In: Proceedings of the 10th conference on field and service robotics (FSR), TorontoGoogle Scholar
  57. 57.
    Vinciarelli A, Pantic M, Bourlard H (2009) Social signal processing: survey of an emerging domain. Image Vis Comput 27(12):1743–1759CrossRefGoogle Scholar
  58. 58.
    Walters ML, Dautenhahn K, Woods SN, Koay KL (2007) Robotic etiquette: results from user studies involving a fetch and carry task. In: ACM/IEEE international conference on human-robot interaction, pp 317–324Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.The More-Than-One Robotics LaboratoryUniversity of Brunei DarussalamBandar Seri BegawanBrunei Darussalam

Personalised recommendations