Blurring Human–Machine Distinctions: Anthropomorphic Appearance in Social Robots as a Threat to Human Distinctiveness

Abstract

The present research aims at gaining a better insight on the psychological barriers to the introduction of social robots in society at large. Based on social psychological research on intergroup distinctiveness, we suggested that concerns toward this technology are related to how we define and defend our human identity. A threat to distinctiveness hypothesis was advanced. We predicted that too much perceived similarity between social robots and humans triggers concerns about the negative impact of this technology on humans, as a group, and their identity more generally because similarity blurs category boundaries, undermining human uniqueness. Focusing on the appearance of robots, in two studies we tested the validity of this hypothesis. In both studies, participants were presented with pictures of three types of robots that differed in their anthropomorphic appearance varying from no resemblance to humans (mechanical robots), to some body shape resemblance (biped humanoids) to a perfect copy of human body (androids). Androids raised the highest concerns for the potential damage to humans, followed by humanoids and then mechanical robots. In Study 1, we further demonstrated that robot anthropomorphic appearance (and not the attribution of mind and human nature) was responsible for the perceived damage that the robot could cause. In Study 2, we gained a clearer insight in the processes underlying this effect by showing that androids were also judged as most threatening to the human–robot distinction and that this perception was responsible for the higher perceived damage to humans. Implications of these findings for social robotics are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1

Notes

  1. 1.

    http://kmjeepics.blogspot.it/2012/11/toshiba-four-legged-fukushima-robot.html Retrieved on 25 November 2013;

    http://cdn.phys.org/newman/gfx/news/2012/toshibashows.jpg Retrieved on 25th November 2013;

  2. 2.

    http://biorobotics.ri.cmu.edu/media/images/fullscreen/snake7.jpg Retrieved on 25 November 2013;

    http://biorobotics.ri.cmu.edu/media/images/fullscreen/snake5.jpg Retrieved on 25th November 2013;

  3. 3.

    http://crustcrawler.com/products/Nomad/index.php Retrieved on 25th November 2013

  4. 4.

    http://www.aist.go.jp/aist_e/latest_research/2010/20101108/20101108.html; AIST: National Institute of Advanced Industrial Science and Technology (of Japan) Retrieved on 25th November 2013

  5. 5.

    http://www.takanishi.mech.waseda.ac.jp/top/research/kobian/KOBIAN-R/img/face_movie.jpg;

    http://www.takanishi.mech.waseda.ac.jp/top/research/kobian/KOBIAN-R/img/2009_neutral.JPG Retrieved on 25th November 2013

  6. 6.

    http://h2t-projects.webarchiv.kit.edu/asfour/Workshop-Humanoids2012/kojiro_small.jpg Retrieved on 25 November 2013;

    http://spectrum.ieee.org/image/1534921 Retrieved on 25 November 2013.

  7. 7.

    http://www.hansonrobotics.com/robot/jules/ Retrieved on 25th November 2013

  8. 8.

    http://androidegeminoid.blogspot.it/ Retrieved on 25 November 2013;

  9. 9.

    This factor also included an item assessing human qualities attributed to robots. This item will not be considered further as it is not relevant to assess support for the current hypotheses.

  10. 10.

    Part of these data were also used in Ferrari and Paladino (2014)—a study that focused on validating the scale develoepd by Kamide and colleagues in an Italian sample.

  11. 11.

    In Study 1, participants were also asked to record their highest level of education to date (\(N = 3\) ‘secondary school’, \(N = 60\) ‘high school’, \(N = 32\) ‘bachelor degree’, \(N = 68\) ‘master degree’, \(N = 16\) ‘Phd or superior degree’, and 3 missing). Exploratory analyses were conducted exploring the role of educational level on the two main dependent variables of Study 1: robot anthropomorphic appearance and damage to humans. Specifically, in the ANOVAs, participants level of education was included as a covariate or as a factor (recoded whereby 0 = high school degree or lower, \(N = 63\); 1 = university degree or higher, \(N = 116\)). No significant effects were obtained for level of education and results for anthropomorphic appearance (all \(ps > .16\)) and for damage to humans and their identity (all \(ps > .55\)) were unaffected by inclusion of education in the analysestext.

  12. 12.

    http://blog.tmcnet.com/blog/tom-keating/gadgets/rovio-wi-fi-voip-robotic-webcam.asp. Retrieved on 25 November 2013.

  13. 13.

    http://www.superdroidrobots.com/shop/item.aspx/new-prebuilt-hd2-s-robot-with-5-axis-arm-and-cofdm-ocu-sold/1279/. Retrieved on 25 November 2013; http://www.superdroidrobots.com/product_info/UGV%20System%20Design. Retrieved on 25 November 2013.

  14. 14.

    http://www.takanishi.mech.waseda.ac.jp/top/research/wabian/img/wabi_front2008.jpg Retrieved on 25 November 2013.

  15. 15.

    http://www.sansokan.jp/robot/showroom/11.html Retrieved on 25 November 2013. http://www.zimbio.com/pictures/p1UElotXSWW/Robot+Venture+Companies+Hold+Joint+Press+Conference/KF3TfpVxLcD/Vstone+Tichno Retrieved on 25 November 2013.

  16. 16.

    Exploratory analysis indicated that Humanity Esteem did not moderate any of the findings. For the sake of brevity, these results are therefore not presented.

  17. 17.

    Initially there was a fourth item (“This type of robot highlights that there are clear differences between humans and machines”) that we excluded it to increase the reliability of undermining to human–machine distinctiveness scale.

References

  1. 1.

    Kanda T, Ishiguro H, Ishida T (2001) Psychological analysis on human–robot interaction. In: IEEE international conference on robotics and automation, 2001. Proceedings 2001 ICRA. vol 4, pp 4166–4173. doi:10.1109/ROBOT.2001.933269

  2. 2.

    Lee KM, Jung Y, Kim J, Kim SR (2006) Are physically embodied social agents better than disembodied social agents?: the effects of physical embodiment, tactile interaction, and people’s loneliness in humanrobot interaction. Int J Hum Comput Stud 64(10):962–973. doi:10.1016/j.ijhcs.2006.05.002

    Article  Google Scholar 

  3. 3.

    European Commission, Special Eurobarometer 382, Public Attitudes Toward Robots (2012) TNS opinion & social, brussels [Producer]. http://ec.europa.eu/public_opinion/archives/ebs/ebs_382_en. Accessed 22th May 2015

  4. 4.

    Kamide H, Mae Y, Kawabe K, Shigemi S, Arai T (2012) A psychological scale for general impressions of humanoids. In 2012 IEEE international conference on robotics and automation (ICRA), pp 4030–4037. doi:10.1080/01691864.2013.751159

  5. 5.

    Mori M (1970) The uncanny valley. Energy 7(4):33–35

    Google Scholar 

  6. 6.

    Mori M, MacDorman KF, Kageki N (2012) The uncanny valley (from the field). IEEE Autom Mag Robot 19(2):98–100. doi:10.1109/MRA.2012.2192811

    Article  Google Scholar 

  7. 7.

    Ramey CH (2005) The uncanny valley of similarities concerning abortion, baldness, heaps of sand, and humanlike robots. In: Proceedings of views of the uncanny valley workshop: IEEE-RAS international conference on humanoid robots, pp 8–13

  8. 8.

    Kaplan F (2004) Who is afraid of the humanoid? Investigating cultural differences in the acceptance of robots. Int J Hum Robot 1(3):1–16. doi:10.1142/S0219843604000289

    Article  Google Scholar 

  9. 9.

    MacDorman KF, Vasudevan SK, Ho CC (2009) Does Japan really have robot mania? Comparing attitudes by implicit and explicit measures. AI Soc 23(4):485–510. doi:10.1007/s00146-008-0181-2

    Article  Google Scholar 

  10. 10.

    MacDorman KF, Ishiguro H (2006) The uncanny advantage of using androids in cognitive and social science research. Interact Stud 7(3):297–337. doi:10.1075/is.7.3.03mac

    Article  Google Scholar 

  11. 11.

    Rosenthal-von der Ptten AM, Krmer NC, Becker-Asano C, Ogawa K, Nishio S, Ishiguro H (2014) The uncanny in the wild. Analysis of unscripted humanandroid interaction in the field. Int J Soc Robot 6(1):67–83. doi:10.1007/s12369-013-0198-7

    Article  Google Scholar 

  12. 12.

    MacDorman KF, Entezari SO (2015) Individual differences predict sensitivity to the uncanny valley. Interact Stud 16(2):141172. doi:10.1075/is.16.2.01mac

    Article  Google Scholar 

  13. 13.

    Tajfel H, Turner JC (1979) An integrative theory of intergroup conflict. Soc Psychol Intergroup Relat 33(47):74. doi:10.1146/annurev.ps.33.020182.000245

    Google Scholar 

  14. 14.

    Brewer MB (1991) The social self: on being the same and different at the same time. Personal Soc Psychol Bull 17(5):475–482. doi:10.1177/0146167291175001

    MathSciNet  Article  Google Scholar 

  15. 15.

    Jetten J, Spears R, Manstead AS (1996) Intergroup norms and intergroup discrimination: distinctive self-categorization and social identity effects. J Personal Soc Psychol 71(6):1222. doi:10.1037/0022-3514.71.6.1222

    Article  Google Scholar 

  16. 16.

    Jetten J, Spears R, Manstead AS (1997) Distinctiveness threat and prototypicality: combined effects on intergroup discrimination and collective self-esteem. Eur J Soc Psychol 27(6):635–657. doi:10.1002/(SICI)1099-0992(199711/12)27:63.0.CO;2-#

  17. 17.

    Haslam N (2006) Dehumanization: an integrative review. Personal Soc Psychol Rev 10(3):252–264. doi:10.1207/s15327957pspr1003_4

    Article  Google Scholar 

  18. 18.

    Vaes J, Leyens JP, Paola Paladino M, Pires Miranda M (2012) We are human, they are not: driving forces behind outgroup dehumanisation and the humanisation of the ingroup. Eur Rev Soc Psychol 23(1):64–106. doi:10.1080/10463283.2012.665250

    Article  Google Scholar 

  19. 19.

    Enz S, Diruf M, Spielhagen C, Zoll C, Vargas PA (2011) The social role of robots in the futureexplorative measurement of hopes and fears. Int J Soc Robot 3(3):263–271. doi:10.1007/s12369-011-0094-y

    Article  Google Scholar 

  20. 20.

    Hegel F, Eyssel F, Wrede B (2010) The social robot ‘flobi’: key concepts of industrial design. In: IEEE RO-MAN 2010, pp 107–112. doi:10.1109/ROMAN.2010.5598691

  21. 21.

    Ishiguro H, Ono T, Imai M, Maeda T, Kanda T, Nakatsu R (2001) Robovie: an interactive humanoid robot. Ind Robot 28(6):498–504. doi:10.1108/01439910110410051

    Article  Google Scholar 

  22. 22.

    Zecca M, Mizoguchi Y, Endo K, Iida F, Kawabata Y, Endo N, Itoh K, Takanishi A (2009) Whole body emotion expressions for KOBIAN humanoid robotpreliminary experiments with different emotional patterns. In: The 18th IEEE international symposium on robot and human interactive communication, 2009. RO-MAN 2009, pp 381–386. doi:10.1109/ROMAN.2009.5326184

  23. 23.

    Hornsey MJ, Jetten J (2003) Not being what you claim to be: impostors as sources of group threat. Eur J Soc Psychol 33:639–657. doi:10.1002/ejsp.176

    Article  Google Scholar 

  24. 24.

    Jetten J, Summerville N, Hornsey MJ, Mewse AJ (2005) When differences matter: intergroup distinctiveness and the evaluation of impostors. Eur J Soc Psychol 35:609–620. doi:10.1002/ejsp.282

    Article  Google Scholar 

  25. 25.

    Warner R, Hornsey MJ, Jetten J (2007) Why minority group members resent impostors. Eur J Soc Psychol 37(1):1–17. doi:10.1002/ejsp.332

    Article  Google Scholar 

  26. 26.

    Jetten J, Hornsey MJ (eds) (2010) Rebels in groups: dissent, deviance, difference, and defiance. Wiley, Hoboken. doi:10.1002/ejsp.332

    Google Scholar 

  27. 27.

    Gray K, Wegner DM (2012) Feeling robots and human zombies: mind perception and the uncanny valley. Cognition 125(1):125130. doi:10.1016/j.cognition.2012.06.007

    Article  Google Scholar 

  28. 28.

    Ferrari F, Paladino MP (2014) Validation of the psychological scale of general impressions of humanoids in an italian sample. In: Workshop proceedings of IAS-13, 13th international conference on intelligent autonomous systems, Padova, Accessed July 15–19, pp 436–441, ISBN: 978-88-95872-06-3

  29. 29.

    Gray HM, Gray K, Wegner DM (2007) Dimensions of mind perception. Science 315(5812):619. doi:10.1126/science.1134475

    Article  Google Scholar 

  30. 30.

    http://www.afhayes.com/spss-sas-and-mplus-macros-and-code.html

  31. 31.

    Hahn-Holbrook J, Holt-Lunstad J, Holbrook C, Coyne SM, Lawson ET (2011) Maternal defense: breast feeding increases aggression by reducing stress. Psychol Sci 22:1288–1295. doi:10.1177/0956797611420729

    Article  Google Scholar 

  32. 32.

    Legault L, Gutsell JN, Inzlicht M (2011) Ironic effects of antiprejudice messages: how motivational interventions can reduce (but also increase) prejudice. Psychol Sci 22:1472–1477. doi:10.1177/0956797611427918

    Article  Google Scholar 

  33. 33.

    Waytz A, Heafner J, Epley N (2014) The mind in the machine: anthropomorphism increases trust in an autonomous vehicle. J Exp Soc Psychol 52:113–117. doi:10.1016/j.jesp.2014.01.005

    Article  Google Scholar 

  34. 34.

    Fritz MS, MacKinnon DP (2007) Required sample size to detect the mediated effect. Psychol Sci 18:233–239. doi:10.1111/j.1467-9280.2007.01882.x

    Article  Google Scholar 

  35. 35.

    Preacher KJ, Hayes AF (2008) Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav Res Methods 40(3):879–891. doi:10.3758/BRM.40.3.879

    Article  Google Scholar 

  36. 36.

    Mazzei D, Billeci L, Armato A, Lazzeri N, Cisternino A, Pioggia G, Igliozzi R, Muratori F, Ahluwalia A, De Rossi D (2010) The FACE of autism. In: Proceedings—IEEE international workshop on robot and human interactive communication, art. no. 5598683, pp 791–796. doi:10.1109/ROMAN.2010.5598683

  37. 37.

    Mazzei D, Lazzeri N, Billeci L, Igliozzi R, Mancini A, Ahluwalia A, Muratori F, De Rossi D (2011) Development and evaluation of a social robot platform for therapy in autism. In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society, EMBS, art. no. 6091119, pp 4515–4518. doi:10.1109/IEMBS.2011.6091119

  38. 38.

    Luke MA, Maio GR (2009) Oh the humanity! Humanity-esteem and its social importance. J Res Personal 43(4):586–601. doi:10.1016/j.jrp.2009.03.001

    Article  Google Scholar 

  39. 39.

    Hyman HH (1955) Survey design and analysis: principles, cases, and procedures. Free Press, Glencoe. doi:10.1177/001316445601600312

    Google Scholar 

  40. 40.

    Judd CM, Kenny DA (1981) Process analysis estimating mediation in treatment evaluations. Eval Rev 5(5):602–619. doi:10.1177/0193841X8100500502

    Article  Google Scholar 

  41. 41.

    Baron RM, Kenny DA (1986) The moderatormediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Personal Soc Psychol 51(6):1173. doi:10.1037/0022-3514.51.6.1173

    Article  Google Scholar 

  42. 42.

    Duffy BR (2003) Anthropomorphism and the social robot. Robot Auton Syst 42:177–190. doi:10.1016/S0921-8890(02)00374-3

    Article  MATH  Google Scholar 

  43. 43.

    Fink J (2012) Anthropomorphism and human likeness in the design of robots and human–robot interaction. Springer, New York, pp 199–208. doi:10.1007/978-3-642-34103-8_20

    Google Scholar 

  44. 44.

    Mitchell WJ, Ho CC, Patel H, MacDorman KF (2011) Does social desirability bias favor humans? Explicitimplicit evaluations of synthesized speech support a new HCI model of impression management. Comput Hum Behav 27(1):402–412. doi:10.1016/j.chb.2010.09.002

    Article  Google Scholar 

  45. 45.

    MacDorman KF, Coram JA, Ho CC, Patel H (2010) Gender differences in the impact of presentational factors in human character animation on decisions in ethical dilemmas. Presence 19(3):213–229. doi:10.1162/pres.19.3.213

    Article  Google Scholar 

  46. 46.

    Heerink M, Krse B, Evers V, Wielinga B (2010) Assessing acceptance of assistive social agent technology by older adults: the almere model. Int J Soc Robot 2(4):361–375. doi:10.1007/s12369-010-0068-5

    Article  Google Scholar 

  47. 47.

    Rosenthal-von der Ptten AM, Krmer NC (2014) How design characteristics of robots determine evaluation and uncanny valley related responses. Comput Hum Behav 36:422–439. doi:10.1016/j.chb.2014.03.066

    Article  Google Scholar 

  48. 48.

    Becker-Asano C, Ogawa K, Nishio S, Ishiguro H (2010) Exploring the uncanny valley with Geminoid HI-1 in a real-world application. In: Proceedings of IADIS International conference interfaces and human computer interaction, pp 121–128. ISBN: 978-972-8939-18-2

  49. 49.

    Haring KS, Mougenot C, Ono F, Watanabe K (2014) Cultural differences in perception and attitude towards robots. Int J Affect Eng 13(3):149–157. doi:10.5057/ijae.13.149

    Article  Google Scholar 

  50. 50.

    Bartneck C (2008, August) Who like androids more: Japanese or US Americans?. In: The 17th IEEE international symposium on robot and human interactive communication, 2008. RO-MAN 2008, pp 553–557. doi:10.1109/ROMAN.2008.4600724

  51. 51.

    Burleigh TJ, Schoenherr JR, Lacroix GL (2013) Does the uncanny valley exist? An empirical test of the relationship between eeriness and the human likeness of digitally created faces. Comput Hum Behav 29(3):759–771. doi:10.1162/pres.16.4.337

    Article  Google Scholar 

  52. 52.

    Sorbello R, Chella A, Giardina M, Nishio S, Ishiguro H (2014) An architecture for telenoid robot as empathic conversational android companion for elderly people. In: The 13th international conference on intelligent autonomous systems (IAS-13), Padova

  53. 53.

    Damiano L, Dumouchel P, Lehmann H (2014) Towards human robot affective co-evolution overcoming oppositions in constructing emotions and empathy. Int J Soc Robot 7(1):7–18

    Article  Google Scholar 

  54. 54.

    Leite I, Castellano G, Pereira A, Martinho C, Paiva A (2014) Empathic robots for long-term interaction. Int J Soc Robot 6(3):329–341

    Article  Google Scholar 

  55. 55.

    Asada M (2014) Towards artificial empathy. Int J Soc Robot 7(1):19–33

    Article  Google Scholar 

  56. 56.

    Lim A, Okuno HG (2014) A recipe for empathy. Int J Soc Robot 7(1):35–49

    Article  Google Scholar 

  57. 57.

    Saygin AP, Chaminade T, Ishiguro H, Driver J, Frith C (2012) The thing that should not be: predictive coding and the uncanny valley in perceiving human and humanoid robot actions. Soc Cogn Affect Neurosci 7(4):413–422. doi:10.1093/scan/nsr025 PMID: 21515639

    Article  Google Scholar 

Download references

Acknowledgments

The research for this paper was financially supported by a doctorate grant awarded by the University of Trento to F. Ferrari. Portions of the data of Study 1 have been analyzed for a different purpose and presented in form of a proceeding at “Evaluating Social Robts”, The 13th International Conference on Intelligent Autonomous System, July 18, 2014, Padova, Italy.

Authors contribution Francesco Ferrari, Maria Paola Paladino and Jolanda Jetten developed the study concept. Francesco Ferrari and Maria Paola Paladino designed the studies. Francesco Ferrari prepared the experimental material, collected and analyzed the data. Francesco Ferrari and Maria Paola Paladino drafted the manuscript. Jolanda Jetten edited and contributed to the critical revisions of the manuscript. All the authors read and approved the final version for submission.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maria Paola Paladino.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ferrari, F., Paladino, M.P. & Jetten, J. Blurring Human–Machine Distinctions: Anthropomorphic Appearance in Social Robots as a Threat to Human Distinctiveness. Int J of Soc Robotics 8, 287–302 (2016). https://doi.org/10.1007/s12369-016-0338-y

Download citation

Keywords

  • Social acceptance of social robots
  • Threat to human distinctiveness
  • Uncanny valley
  • Robot anthropomorphic appearance
  • Androids