International Journal of Social Robotics

, Volume 8, Issue 1, pp 103–123 | Cite as

Evaluation of a Fuzzy-Based Impedance Control Strategy on a Powered Lower Exoskeleton

  • Huu Toan Tran
  • Hong Cheng
  • Huang Rui
  • XiChuan Lin
  • Mien Ka Duong
  • QiMing Chen
Article

Abstract

This paper comprehensively presents the analysis, design, and control of a wearable lower limb exoskeleton intended to enhance human performance and support load-carrying. The exoskeleton is powered at hip and knee joints to provide maximum joint torques of 74 Nm for the joint flexion/extension augmentation and load support. Typical issues regarding the implementation of the exoskeleton, such as mechanical design, sensory system, distributed embedded system, and high-speed networked control architecture are briefly presented. In order to control the coupled human-robot system, a new fuzzy-based impedance control strategy, previously developed by the authors, is used to provide assistive torques by regulating the desired impedance between the exoskeleton and a wearer’s limb according to a specific motion speed. The effect of human behaviours on the change of impedance parameters across variable walking speeds is adopted to design the fuzzy rules for the control strategy. As a result, the fuzzy-based impedance regulation is separately designed for swing and stance walking phases to adapt to the change. The control performance of the designed exoskeleton evaluated on a bench-testing over different ranges of walking speeds (about 0.3–1.2 m/s) have demonstrated that, resulting interaction torque, human-exoskeleton tracking error, and electrical power consumption are significantly reduced as compared to a traditional impedance control. Besides that, an average of 72.3 % of the load is transferred to the ground by the exoskeleton during the stance phase of walking. The developed control strategy on the lower exoskeleton has the potential to increase comfort and adaptation to users during daily use.

Keywords

Lower exoskeleton Wearable robotics Assist robotics Impedance control Fuzzy logic control Physical human-robot interaction 

Supplementary material

12369_2015_324_MOESM1_ESM.doc (24 kb)
Supplementary material 1 (doc 23 KB)
12369_2015_324_MOESM2_ESM.docx (36 kb)
Supplementary material 2 (docx 35 KB)

References

  1. 1.
    Kazerooni H, Guo J (1993) Human extenders. ASME J Dyn Syst Meas Control 115(2B):281–289CrossRefGoogle Scholar
  2. 2.
    Kazerooni H, Steger R, Huang L (2006) Hybrid control of the Berkeley lower extremity exoskeleton (BLEEX). Int J Rob Res 25:561–573CrossRefGoogle Scholar
  3. 3.
    Kawamoto H, Sankai Y (2002) Power assist system HAL-3 for gait disorder person. In: Proceedings of the 8th International conferenceon computers for handicapped persons—ICCHP, Linz, pp 196–203Google Scholar
  4. 4.
    Riener R, Lnenburger L et al (2005) Patient-cooperative strategies for robot-aided treadmill training: first experimental results. IEEE Trans Neural Syst Rehabil Eng 13:380–394CrossRefGoogle Scholar
  5. 5.
    Veneman JF, Kruidhof R et al (2007) Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng 15:379–386CrossRefGoogle Scholar
  6. 6.
    Herr H (2009) Exoskeletons and orthoses: classification, design challenges and future directions. J Neuro Eng Rehabil 6:6–21CrossRefGoogle Scholar
  7. 7.
    Lee S, Sankai Y (2002) Power assist control for walking aid withHAL-3 based on EMG and impedance adjustment around knee joint. In: Proceedings of IEEE international conference on intelligent robots and systems, Lausanne, pp 1499–1504Google Scholar
  8. 8.
    Banala SK, Kim SH, Agrawal SK, Scholz JP (2009) Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Trans Neural Syst Rehabil Eng 17(1):2–8CrossRefGoogle Scholar
  9. 9.
    Nathanael J, Guillaume M (2011) Connecting a human limb to an exoskeleton. IEEE Trans Robot 28(3):697–709Google Scholar
  10. 10.
    Li Z, Wang B, Sun F, Yang C et al (2014) sEMG-based joint force controls for an upper-limb power-assist exoskeleton robot. IEEE J Biomed Health Inf 18(3):1043–1050CrossRefGoogle Scholar
  11. 11.
    Ettore C, Rosen J, Perry JC, Burns S (2006) Myoprocessor for neural controlled powered exoskeleton arm. IEEE Trans Biomed Eng 53(11):2387–2396CrossRefGoogle Scholar
  12. 12.
    Perry JC, Rosen J, Burns S (2007) Upper-limb powered exoskeleton design. IEEE/ASME Trans Mechatron 12(4):408417CrossRefGoogle Scholar
  13. 13.
    Hayashi T et al (2005) Control method of robot suit HAL working asoperator’s muscle using biological and dynamical information. In: Proceedings of IEEE international conference on IROS, Alberta, pp 3063–3068Google Scholar
  14. 14.
    Banala SK, Agrawal SK, Kim SH, Scholz JP (2010) Novel gait adaptation and neuromotor training results using an active leg exoskeleton. IEEE/ASME Trans Mechatron 15(2):216–225CrossRefGoogle Scholar
  15. 15.
    Wang L et al (2011) Model predictive control-based gait patterngeneration for wearable exoskeletons. In: International conference on intelligent robots and systems, pp 1–6Google Scholar
  16. 16.
    Au S, Herr H (2008) Powered ankle-foot prosthesis. IEEE Robot Autom Mag 15(3):52–59CrossRefGoogle Scholar
  17. 17.
    Butler PB, Major RE, Patrick JHc (1984) The technique of reciprocal walking using the hip guidance orthosis (HGO) with crutches. Prosthet Orthot Int 8:33–38Google Scholar
  18. 18.
    Farris RJ, Quintero HA, oldfarb MG (2011) Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals. IEEE Trans Neural Syst Rehabil Eng 19(6):652–659CrossRefGoogle Scholar
  19. 19.
    Dollar M, Herr H (2008) Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art. IEEE Trans Robot 24(1):144–158CrossRefGoogle Scholar
  20. 20.
    Herr H (2009) Exoskeletons and orthoses: classification, design challenges and future directions. J Neurol Eng Rehab 6:21CrossRefGoogle Scholar
  21. 21.
    Walsh CJ, Endo K, Herr H (2007) A quasi-passive leg exoskeleton for load-carrying augmentation. Int J Hum Robot 4(3):487–506CrossRefGoogle Scholar
  22. 22.
    Yu SN, Lee HD et al (2012) Design of an under-actuated exoskeleton system for walking assist while load carrying. Adv Robot 26(5):561–580CrossRefMathSciNetGoogle Scholar
  23. 23.
    Wang B, Yang C, Li Z, et al (2012) sEMG-based control of an exoskeleton robot arm. In: Proceedings of the 5th International conference on intelligent robotics and applications (ICIRA 2012), Montreal, pp 63–72Google Scholar
  24. 24.
    Folgheraiter M, Jordan M, Straube S (2012) Measuring the improvement of the interaction comfort of a wearable exoskeleton. Int J Soc Robot 4:253–302CrossRefGoogle Scholar
  25. 25.
    Hogan N (1985) Impedance control: an approach to manipulation: part I, II, III. J Dyn Syst Meas Control 107(1):1–24CrossRefMATHGoogle Scholar
  26. 26.
    Jung S, Hsia TC, Bonitz RG (2004) Force tracking impedance control of robot manipulators under unknown environment. IEEE Trans Control Syst Technol 12(3):474–483CrossRefGoogle Scholar
  27. 27.
    Seraji H, Colbaugh R (1997) Force tracking in impedance control. Int J Robot Res 16(1):97–117CrossRefGoogle Scholar
  28. 28.
    Park JH (2001) Impedance control for biped robot locomotion. IEEE Trans Robot Autom 17(6):870–882CrossRefGoogle Scholar
  29. 29.
    Ha QP, Nguyen QH, Rye DC et al (2000) Impedance control of a hydraulically actuated robotic excavator. Autom Constr 9(5–6):421–435CrossRefGoogle Scholar
  30. 30.
    Mehdi H, Boubaker O (2012) Stiffness and impedance control using Lyapunov theory for robot-aided rehabilitation. Int J Soc Robot 4:107–119CrossRefGoogle Scholar
  31. 31.
    Unluhisarcikli O, Pietrusinski M et al. (2011) Design and control of a robotic lower extremity exoskeleton for gait rehabilitation. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems, San Francico, pp 25–30Google Scholar
  32. 32.
    Akdoğan E, Adli MA (2011) The design and control of a therapeutic exercise robot for lower limb rehabilitation: physiotherabot. Mechatronics 21(3):509–522CrossRefGoogle Scholar
  33. 33.
    Lee S, Sankai Y (2005) Virtual impedance adjustment in unconstrained motion for an exoskeletal robot assisting the lower limb. Adv Robot 19(7):773–795CrossRefGoogle Scholar
  34. 34.
    Aguirre-Ollinger G, Colgate JE et al (2007) Active-impedancecontrol of a lower-limb assistive exoskeleton. In: Proceedings ofIEEE 10th international conference on rehabilitation robotics, Noordwijk, pp 188–195Google Scholar
  35. 35.
    van der Kooij H, Veneman JF et al (2006) Compliant actuation of exoskeletons. Int J Robot Res 25:261–281CrossRefGoogle Scholar
  36. 36.
    Van Damme M, Beyl P, Vanderborght B et al (2010) The safety of a robot actuated by pneumatic muscle-a case study. Int J Soc Robot 2:289–303CrossRefGoogle Scholar
  37. 37.
    Tran HT, Cheng H, Lin XC et al (2014) The relationship between physical human-exoskeleton interaction and dynamic factors: using a learning approach for control applications. Sci China Inf Sci 57(12):1–13CrossRefGoogle Scholar
  38. 38.
    Tran HT, Cheng H, Duong MK et al (2014) Fuzzy-based impedance regulation for control of the coupled human–exoskeleton system. In: Proceedings of IEEE conference on robotics and biomimetics, Bali, pp 986–992Google Scholar
  39. 39.
    Rose J, Gamble JG (2006) Human walking, 3rd edn. Williams and Wilkins, BaltimoreGoogle Scholar
  40. 40.
    Winter DA (2009) Biomechanics and motor control of human movement, 4th edn. Wiley, New JerseyCrossRefGoogle Scholar
  41. 41.
    Llyod R, Cooke CB (2000) Kinetic changes associated with load carriage using two rucksack designs. Ergonomics 43(9):1331–1341CrossRefGoogle Scholar
  42. 42.
    Bamberg SJM, Benbasat AY, Scarborough DM et al (2008) Gait analysis using a shoe-integrated wireless sensor system. IEEE Trans Inf Technol Biomed 12(4):413–423CrossRefGoogle Scholar
  43. 43.
    Shu L, Hua T, Wang Y et al (2010) In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array. IEEE Trans Inf Technol Biomed 14(3):767–775CrossRefGoogle Scholar
  44. 44.
    Giuliani M, Lenz C, Müller T, Rickert M, Knoll A (2000) Design principles for safety in human-robot interaction. Int J Soc Robot 2:253–274CrossRefGoogle Scholar
  45. 45.
    Hidler JM, Wall AE (2005) Alterations in muscle activation patterns during robotic-assisted walking. Clin Biomech 20:184–193CrossRefGoogle Scholar
  46. 46.
    Kazerooni H, Racine JL et al (2005) On the control of the berkeley lower extremity exoskeleton (BLEEX). In: Proceedings of IEEE international conference on robotics and automation, Barcelona, pp 4353–4360Google Scholar
  47. 47.
    Walsh CJ, Pasch K, Herr H (2006) An autonomous, underactuatedexoskeleton for load-carrying augmentation. In: In: Proceedings of international conference on intelligent robots and systems, Beijing, pp 1410–1415Google Scholar
  48. 48.
    Zeng G, Hemami A (1997) An overview of robot force control. Robotica 15(5):473–482CrossRefGoogle Scholar
  49. 49.
    Chiaverini S, Siciliano B, Villani L (1999) A survey of robot interaction control schemes with experimental comparison. IEEE/ASME Trans Mechatron 4(3):273285CrossRefGoogle Scholar
  50. 50.
    Lu Z, Goldenberg AA (1995) Robust impedance control and force regulation: theory and experiments. Int J Robot Res 16(1):97–117Google Scholar
  51. 51.
    Dégoulange E, Dauchez P (1994) External force control of an industrial PUMA 560 robot. J Robot Syst 11(6):523–540CrossRefGoogle Scholar
  52. 52.
    Spong MW, Viyasagar M (1989) Robot dynamics and control. Wiley, New YorkGoogle Scholar
  53. 53.
    Anderson RJ, Spong MW (1988) Hybrid impedance control of robotic manipulators. IEEE Trans Robot Autom 4:549–556CrossRefGoogle Scholar
  54. 54.
    Lawrence DA (1988) Impedance control stability properties in common implementations. In: Proceedings of IEEE international conference on robotics and automation, Philadelphia, pp 1185–1190Google Scholar
  55. 55.
    Lu WS, Meng QH (1991) Impedance control with adaptation for robotic manipulations. IEEE Trans Robot Autom 7(3):408–415CrossRefGoogle Scholar
  56. 56.
    Astrom KJ, Wittenmark B (1995) Adaptive control, 2nd edn. Addison Wesley, Reading, MAGoogle Scholar
  57. 57.
    Serban R, Freeman JS (2001) Identification and identifiability of unknown parameters in multibody dynamic systems. Multibody Syst Dyn 5:335–350CrossRefMATHGoogle Scholar
  58. 58.
    Bamieh B, Giarre L (2001) LPV models: identification for gain scheduling control. In: Proceedings of European control conferenceGoogle Scholar
  59. 59.
    Passino KM, Yurkovich S (1998) Fuzzy control. Addison Wesley Longman, Reading, MAGoogle Scholar
  60. 60.
    Lee CC (1990) Fuzzy logic in control systems: fuzzy logic controller. II. IEEE Tran Syst Man Cybern 20(2):419–435CrossRefMATHGoogle Scholar
  61. 61.
    Perry J (1992) Gait analysis: normal and pathological function. SLACK, Thorofare, NJGoogle Scholar
  62. 62.
    Goldberg SR, Stanhope SJ (2013) Sensitivity of joint moments to changes in walking speed and body-weight-support are interdependent and vary across joints. J Biomech 46(6):1176–1183CrossRefGoogle Scholar
  63. 63.
    Shamaei K, Sawicki GS, Dollar AM (2013) Estimation of quasi-stiffness of the human knee in the stance phase of walking. PLoS One 8(3):e59993CrossRefGoogle Scholar
  64. 64.
    Shamaei K, Sawicki GS, Dollar AM (2013) Estimation of quasi-stiffness of the human hip in the stance phase of walking. PLoS One 8(12):e81841CrossRefGoogle Scholar
  65. 65.
    Neptune RR, Sasaki K, Kautz SA (2008) The effect of walking speed on muscle function and mechanical energetics. Gait Posture 28(1):135–143CrossRefGoogle Scholar
  66. 66.
    Shamaei K, Napolitano PC, Dollar AM (2014) Design and functional evaluation of a quasi-passive compliant stance control knee-ankle-foot orthosis. IEEE Trans Neural Syst Rehabil Eng 22(2):258–268CrossRefGoogle Scholar
  67. 67.
    Fey NP, Silverman AK, Neptune RR (2010) The influence of increasing steady-state walking speed on muscle activity in below-knee amputees. J Electromyogr Kinesiol 20(1):155–161CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Center for RoboticsUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Faculty of Electronic TechnologyIndustrial University of Ho Chi Minh CityHo Chi Minh CityVietnam

Personalised recommendations