Skip to main content

Priming as a Means to Reduce Ambiguity in Learning from Demonstration


Learning from Demonstration is an established robot learning technique by which a robot acquires a skill by observing a human or robot teacher demonstrating the skill. In this paper we address the ambiguity involved in inferring the intention with one or several demonstrations. We suggest a method based on priming, and a memory model with similarities to human learning. Conducted experiments show that the developed method leads to faster and improved understanding of the intention with a demonstration by reducing ambiguity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. Anderson JR, Bothell D, Byrne MD, Douglass S, Lebiere C, Qin Y (2004) An integrated theory of the mind. Psychol Rev 111(4):1036–1060

    Article  Google Scholar 

  2. Anderson John R, Schunn C (2000) Implications of the ACT-R learning theory: No magic bullets. In: Glaser R (ed) Advances in instructional psychology, educational design and cognitive science. Lawrence Erlbaum Associates, Mahwah, pp 1–33

    Google Scholar 

  3. Argall BD, Chernova S, Veloso M, Browning B (2009) A survey of robot learning from demonstration. Robot Auton Syst 57(5):469–483

    Article  Google Scholar 

  4. Bensch S, Hellström T (2010) On ambiguity in robot learning from demonstration. In: Christensen HI, Groen F, Petriu E (eds) Intelligent autonomous systems 11 - IAS-11, pp 47–56

  5. Berthold MR, Brandes U, Kötter T, Mader M, Nagel U, Thiel K (2009) Pure spreading activation is pointless. In: Proceedings of the 18th ACM conference on Information and knowledge management, pp 1915–1918. ACM

  6. Billard A, Calinon S, Dillmann R, Schaal S (2008) Robot programming by demonstration. Handbook of robotics, vol 59. Springer, New York

    Google Scholar 

  7. Billard A, Matarić MJ (2001) Learning human arm movements by imitation: evaluation of a biologically inspired connectionist architecture. Robot Auton Syst 37(2):145–160

    Article  MATH  Google Scholar 

  8. Billing EA, Hellström T (2008) Behavior recognition for segmentation of demonstrated tasks. In: Proceedings of IEEE SMC international conference on distributed human-machine systems, pp 228–234. IEEE

  9. Billing EA, Hellström T (2010) A formalism for learning from demonstration. Paladyn J Behav Robot 1(1):1–13

    Article  Google Scholar 

  10. Billing EA, Hellstroöm T, Janlert L-E (2010) Behavior recognition for learning from demonstration. In: Proceedings of robotics and automation (ICRA), 2010 IEEE international conference on, pp 866–872. IEEE

  11. Blum C (2005) Ant colony optimization: introduction and recent trends. Phys Life Rev 2(4):353–373

    Article  Google Scholar 

  12. Breazeal C (2009) Role of expressive behaviour for robots that learn from people. Philos Trans R Soc B 364(1535):3527–3538

    Article  Google Scholar 

  13. Breazeal C, Berlin M, Brooks A, Gray J, Thomaz AL (2006) Using perspective taking to learn from ambiguous demonstrations. Robot Auton Syst 54(5):385–393

    Article  Google Scholar 

  14. Breazeal C, Scassellati B (2002) Challenges in building robots that imitate people. Imitation in animals and artifacts, pp 363–390. MIT Press

  15. Brown AS (1996) Single and multiple test repetition priming in implicit memory. Memory 4(2):159–174

    Article  Google Scholar 

  16. Cakmak M, DePalma N, Arriaga R, Thomaz AL (2009) Computational benefits of social learning mechanisms: Stimulus enhancement and emulation. In: Proceedings of development and learning, 2009. ICDL 2009. IEEE 8th international conference on, IEEE pp 1–7

  17. Cakmak M, Thomaz AL (2012) Designing robot learners that ask good questions. In: Proceedings of the seventh annual ACM/IEEE international conference on human-robot interaction, ACM pp 17–24

  18. Cederborg T, Oudeyer P-Y (2013) From language to motor gavagai: unified imitation learning of multiple linguistic and nonlinguistic sensorimotor skills. Auton Mental Dev, IEEE Trans 5(3):222–239

  19. Chao C, Cakmak M, Thomaz AL (2011) Towards grounding concepts for transfer in goal learning from demonstration. In: Proceedings of the development and learning (ICDL), 2011 IEEE international conference on, IEEE, vol 2, pp 1–6

  20. Chernova S, Veloso M (2008) Learning equivalent action choices from demonstration. In: Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, pp 1216–1221. IEEE

  21. Collins AM, Loftus EF (1975) A spreading-activation theory of semantic processing. Psychol Rev 82(6):407–428

    Article  Google Scholar 

  22. Collins AM, Quillian MR (1969) Retrieval time from semantic memory. J Verbal Learn Verbal Behav 8(2):240–247

    Article  Google Scholar 

  23. Coradeschi S, Saffiotti A (2003) An introduction to the anchoring problem. Robot Auton Syst 43(2):85–96

    Article  Google Scholar 

  24. Crestani Fabio (1997) Application of spreading activation techniques in information retrieval. Artif Intell Rev 11(6):453–482

    Article  Google Scholar 

  25. Demiris J, Hayes G (2002) Imitation as a dual-route process featuring predictive and learning components; a biologically plausible computational model. Imitation in animals and artifacts, pp 327–361

  26. Deneubourg J-L, Aron S, Goss S, Pasteels JM (1990) The self-organizing exploratory pattern of the argentine ant. J insect behav 3(2):159–168

    Article  Google Scholar 

  27. Dillmann R (2004) Teaching and learning of robot tasks via observation of human performance. Robot Auton Syst 47(2):109–116

  28. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. Syst Man Cybern Part B 26(1):29–41

    Article  Google Scholar 

  29. Dorigo M, Stützle T (2003) The ant colony optimization metaheuristic: Algorithms, applications, and advances. In: Handbook of metaheuristics, pp 250–285. Springer, New York

  30. Dorigo Marco, Stützle Thomas (2004) Ant colony optimization. MIT Press, Cambridge

    Book  MATH  Google Scholar 

  31. Ekvall S, Kragic D (2005) Grasp recognition for programming by demonstration. In: Robotics and automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE international conference on, IEEE, pp 748–753

  32. Erlhagen W, Mukovskiy A, Bicho E, Panin G, Kiss C, Knoll Alois, Van Schie Hein, Bekkering Harold (2006) Goal-directed imitation for robots: a bio-inspired approach to action understanding and skill learning. Robot Auton Syst 54(5):353–360

    Article  Google Scholar 

  33. Flavell JH, Beilin H, Pufall P (1992) Perspectives on perspective-taking. In: Beilin H, Pufall P (eds) Piagets theory: prospects and possibilities. Lawrence Erlbaum, Hillsdale, pp 107–139

    Google Scholar 

  34. Fonooni B, Hellström T, Janlert L-E (2012) Learning high-level behaviors from demonstration through semantic networks. In: Proceedings of 4th international conference on agents and artificial intelligence, pp 419–426

  35. Fonooni B, Hellström T, Janlert LE (2013) Towards goal based architecture design for learning high-level representation of behaviors from demonstration. In: Proceedings of the 2013 IEEE international multi-disciplinary conference on cognitive methods in situation awareness and decision support (CogSIMA), pp 67–74

  36. Fonooni Benjamin, Jevtić Aleksandar, Hellström Thomas, Janlert Lars-Erik (2015) Applying ant colony optimization algorithms for high-level behavior learning and reproduction from demonstrations. Robot Auton Syst 65:24–39

    Article  Google Scholar 

  37. Grassé P-P (1959) La reconstruction du nid et les coordinations interindividuelles chezbellicositermes natalensis etcubitermes sp. la théorie de la stigmergie: Essai d’interprétation du comportement des termites constructeurs. Insectes sociaux 6(1):41–80

    Article  MathSciNet  Google Scholar 

  38. Gulan Tanja, Valerjev Pavle (2010) Semantic and related types of priming as a context in word recognition. Rev Psychol 17(1):53–58

    Google Scholar 

  39. Hajimirsadeghi H, Ahmadabadi MN, Araabi BN, Moradi H (2012) Conceptual imitation learning in a human-robot interaction paradigm. ACM Trans Intell Syst Technol 3(2):28

    Article  Google Scholar 

  40. Henson RNA, Rugg MD (2003) Neural response suppression, haemodynamic repetition effects, and behavioural priming. Neuropsychologia 41(3):263–270

    Article  Google Scholar 

  41. Horner AJ, Henson RN (2008) Priming, response learning and repetition suppression. Neuropsychologia 46(7):1979–1991

    Article  Google Scholar 

  42. Huber David E (2008) Immediate priming and cognitive aftereffects. J Exp Psychol 137(2):324

    Article  Google Scholar 

  43. Jevtić A (2011) Swarm intelligence: novel tools for optimization, feature extraction, and multi-agent system modeling. PhD thesis, Universidad Politécnica de Madrid

  44. Jevtić A, Gutiérrez A (2011) Distributed bees algorithm parameters optimization for a cost efficient target allocation in swarms of robots. Sensors 11(11):10880–10893

    Article  Google Scholar 

  45. Jevtić A, Gutiérrez A, Andina D, Jamshidi M (2012) Distributed bees algorithm for task allocation in swarm of robots. Syst J IEEE 6(2):296–304

    Article  Google Scholar 

  46. Levy DA, Stark CEL, Squire LR (2004) Intact conceptual priming in the absence of declarative memory. Psychol Sci 15(10):680–686

    Article  Google Scholar 

  47. Lim GH, Suh IlH, Suh H (2011) Ontology-based unified robot knowledge for service robots in indoor environments. Syst, Man Cybern, Part A 41(3):492–509

    Article  Google Scholar 

  48. Maccotta L, Buckner R (2004) Evidence for neural effects of repetition that directly correlate with behavioral priming. J Cogn Neurosci 16(9):1625–1632

    Article  Google Scholar 

  49. MacQueen J et al (1967) Some methods for classification and analysis of multivariate observations. Proceedings of the fifth Berkeley symposium on mathematical statistics and probability 1:281–297

  50. Mahmoodian M, Moradi H, Ahmadabadi MN, Araabi BN (2013) Hierarchical concept learning based on functional similarity of actions. In: Robotics and Mechatronics (ICRoM), 2013 First RSI/ISM International Conference on, pp 1–6. IEEE

  51. Marsh L, Onof C (2008) Stigmergic epistemology, stigmergic cognition. Cogn Syst Res 9(1):136–149

    Article  Google Scholar 

  52. Mataric MJ (2002) Sensoryf: Linking perception to action and biology to robotics. In: Imitation in animals and artifacts, pp 391–422. MIT Press, Cambridge

  53. Maxfield L (1997) Attention and semantic priming: a review of prime task effects. Conscious Cogn 6(2):204–218

    Article  Google Scholar 

  54. McNamara Timothy P (2004) Semantic priming: perspectives from memory and word recognition. Psychology Press, New York

    Google Scholar 

  55. Neely James H (1977) Semantic priming and retrieval from lexical memory: roles of inhibitionless spreading activation and limited-capacity attention. J Exp psychol 106(3):226

    Article  Google Scholar 

  56. Neely James H (1991) Semantic priming effects in visual word recognition: a selective review of current findings and theories. Basic Processes Read 11:264–336

    Google Scholar 

  57. Ochsner KN, Chiu C-YP, Schacter DL (1994) Schacter. Varieties of priming. Curr Opin Neurobiol 4(2):189–194

    Article  Google Scholar 

  58. Pastor P, Hoffmann H, Asfour T, Schaal S (2009) Learning and generalization of motor skills by learning from demonstration. In: Robotics and Automation, 2009. ICRA’09. IEEE International Conference on, pp 763–768. IEEE

  59. Reitter D, Keller F, Moore JD (2011) A computational cognitive model of syntactic priming. Cognitive science 35(4):587–637

    Article  Google Scholar 

  60. Schaal Stefan (1999) Is imitation learning the route to humanoid robots? Trends Cogn Sci 3(6):233–242

    Article  Google Scholar 

  61. Squire LR (1992) Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev 99(2):195–231

    Article  Google Scholar 

  62. Taylor ME, Suay HB, Chernova S (2011) Integrating reinforcement learning with human demonstrations of varying ability. In: The 10th International Conference on Autonomous Agents and Multiagent Systems-Vol 2, pp 617–624. International Foundation for Autonomous Agents and Multiagent Systems

  63. Tipper SP (1985) The negative priming effect: Inhibitory priming by ignored objects. Q J Exp Psychol 37(4):571–590

    Article  Google Scholar 

  64. Tulving E, Schacter DL (1990) Priming and human memory systems. Science 247(4940):301–306

    Article  Google Scholar 

  65. Tversky B, Lee P, Mainwaring S (1999) Why do speakers mix perspectives? Spat Cogn Comput 1(4):399–412

    Google Scholar 

  66. Vaidya CJ, Gabrieli JDE, Monti LA, Tinklenberg JR, Yesavage JA (1999) Dissociation between two forms of conceptual priming in alzheimer’s disease. Neuropsychology 13(4):516–524

    Article  Google Scholar 

  67. Van ML, Van Rijn H (2007) Accounting for subliminal priming in act-r. In: Proceedings of the 8th International Conference on Cognitive Modeling, pp 1–6

  68. Verma D, Rao RP (2005) Goal-based imitation as probabilistic inference over graphical models. In: Advances in neural information processing systems, pp 1393–1400

  69. Warnier M, Guitton J, Lemaignan S, Alami R (2012) When the robot puts itself in your shoes. managing and exploiting human and robot beliefs. In: RO-MAN, 2012 IEEE, pp 948–954. IEEE

  70. Warrington EK, Weiskrantz L (1970) Amnesic syndrome: Consolidation or retrieval?. Nature

  71. Wig GS (2012) Repetition suppression and repetition priming are processing outcomes. Cogn Neurosci 3(3–4):247–248

    Article  Google Scholar 

  72. Wiggs CL, Martin A (1998) Properties and mechanisms of perceptual priming. Curr Opin Neurobiol 8(2):227–233

Download references


This work was financed by the EU funded Initial Training Network (ITN) in the Marie-Curie People Programme (FP7): INTRO (INTeractive RObotics research network), Grant agreement no. 238486.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Benjamin Fonooni.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fonooni, B., Hellström, T. & Janlert, LE. Priming as a Means to Reduce Ambiguity in Learning from Demonstration. Int J of Soc Robotics 8, 5–19 (2016).

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: