International Journal of Social Robotics

, Volume 7, Issue 2, pp 137–153 | Cite as

From Proxemics Theory to Socially-Aware Navigation: A Survey

Survey

Abstract

In the context of a growing interest in modelling human behavior to increase the robots’ social abilities, this article presents a survey related to socially-aware robot navigation. It presents a review from sociological concepts to social robotics and human-aware navigation. Social cues, signals and proxemics are discussed. Socially aware behavior in terms of navigation is tackled also. Finally, recent robotic experiments focusing on the way social conventions and robotics must be linked is presented.

Keywords

Proxemics Human-aware navigation Socially-aware navigation 

References

  1. 1.
    Aiello JR (1977) A further look at equilibrium theory: visual interaction as a function of interpersonal distance. Environ Psychol Nonverbal Behav 1:122–140CrossRefMathSciNetGoogle Scholar
  2. 2.
    Aiello JR (1987) Human spatial behavior. In: Stokols D, Altman I (eds) Handbook of environmental psychology. Wiley, New York, pp 359–504Google Scholar
  3. 3.
    Alili S, Alami R, Montreuil V (2009) A task planner for an autonomous social robot. In: Asama H, Kurokawa H, Ota J, Sekiyama K (eds) Distributed autonomous robotic systems 8. Springer, Berlin, pp 335–344CrossRefGoogle Scholar
  4. 4.
    Althaus P, Ishiguro H, Kanda T, Miyashita T, Christensen H (2004) Navigation for human-robot interaction tasks, vol 2. pp 1894–1900Google Scholar
  5. 5.
    Argyle M, Dean J (1965) Eye-contact, distance and affiliation. Sociometry 28(3):289–304CrossRefGoogle Scholar
  6. 6.
    Arkin RC (1998) Behavior-based robotics, 1st edn. MIT Press, CambridgeGoogle Scholar
  7. 7.
    Bailenson JN, Blascovich J, Beall AC, Loomis JM (2001) Equilibrium theory revisited: mutual gaze and personal space in virtual environments. Presence Teleoperators Virtual Environ 10(6):583–598CrossRefGoogle Scholar
  8. 8.
    Bailenson JN, Blascovich J, Beall AC, Loomis JM (2003) Interpersonal distance in immersive virtual environments. Pers Soc Psychol Bull 29:819–833CrossRefGoogle Scholar
  9. 9.
    Bar-Haim Y, Aviezer O, Berson Y, Sagi A (2002) Attachment in infancy and personal space regulation in early adolescence. Attach Hum Dev 4(1):68–83CrossRefGoogle Scholar
  10. 10.
    Barraquand R, Crowley JL (2008) Learning polite behavior with situation models. In: Proceedings of the 3rd ACM/IEEE international conference on Human robot interaction, ACM, pp 209–216Google Scholar
  11. 11.
    Bartneck C, Forlizzi J (2004) A design-centred framework for social human-robot interaction. In: IEEE International workshop on robot and human interactive communication., pp 591–594Google Scholar
  12. 12.
    Bhatt M, Dylla F (2009) A qualitative model of dynamic scene analysis and interpretation in ambient intelligence systems. Int J Robot Autom 24(3):235Google Scholar
  13. 13.
    Borkowski A, Siemiatkowska B, Szklarski J (2010) Towards semantic navigation in mobile robotics. In: Engels G, Lewerentz C, Schäfer W, Schürr A, Westfechtel B (eds) Graph transformations and model-driven engineering, lecture notes in computer science, vol 5765. Springer, Berlin, pp 719–748CrossRefGoogle Scholar
  14. 14.
    Butler JT, Agah A (2001) Psychological effects of behavior patterns of a mobile personal robot. Auton Robot 10(2):185– 202Google Scholar
  15. 15.
    Carton D, Turnwald A, Wollherr D, Buss M (2012) Proactively approaching pedestrians with an autonomous mobile robot in urban environments. In: 13th international symposium on experimental roboticsGoogle Scholar
  16. 16.
    Chung SY, Huang HP (2010) A mobile robot that understands pedestrian spatial behaviors. In: IEEE/RSJ international conference on intelligent robots and systems, pp 5861–5866Google Scholar
  17. 17.
    Ciolek M, Kendon A (1980) Environment and the spatial arrangement of conversational encounters. Sociol Inq 50:237–271CrossRefGoogle Scholar
  18. 18.
    Cristani M, Paggetti G, Vinciarelli A, Bazzani L, Menegaz G, Murino V (2011) Towards computational proxemics: inferring social relations from interpersonal distances. In: 3rd IEEE international conference on social computing, pp 290–297Google Scholar
  19. 19.
    Dautenhahn K, Walters M, Woods S, Koay KL, Nehaniv CL, Sisbot A, Alami R, Siméon T (2006) How may i serve you?: a robot companion approaching a seated person in a helping context. In: 1st ACM SIGCHI/SIGART conference on human-robot interaction, pp 172–179Google Scholar
  20. 20.
    Duffy BR (2001) Towards social intelligence in autonomous robotics: a review. In: Robotics, distance learning and intelligent communication systems, pp 1–6Google Scholar
  21. 21.
    Efran MG, Cheyne JA (1973) Shared space: the cooperative control of spatial areas by two interacting individuals. Can J Behav Sci 5:201–210CrossRefGoogle Scholar
  22. 22.
    Fulgenzi C, Spalanzani A, Laugier C (2009) Probabilistic motion planning among moving obstacles following typical motion patterns. In: IEEE/RSJ international conference on intelligent robots and systems, pp 4027–4033Google Scholar
  23. 23.
    Ge SS (2007) Social robotics: integrating advances in engineering and computer science. In: 4th annual international conference organized by Electrical Engineering/Electronics, Computer, Telecommunication and Information Technology (ECTI) AssociationGoogle Scholar
  24. 24.
    Ge W, Collins R, Ruback B (2009) Automatically detecting the small group structure of a crowd. In: Workshop on applications of computer vision, pp 1–8Google Scholar
  25. 25.
    Gérin-Lajoie M, Richards CL, Fung J, McFadyen BJ (2008) Characteristics of personal space during obstacle circumvention in physical and virtual environments. Gait Posture 27(2):239– 247Google Scholar
  26. 26.
    Gharpure C, Kulyukin V (2008) Robot-assisted shopping for the blind: issues in spatial cognition and product selection. Intell Serv Robot 1:237–251CrossRefGoogle Scholar
  27. 27.
    Gifford R (1983) The experience of personal space: perception of interpersonal distance. J Nonverbal Behav 7(3):170–178CrossRefGoogle Scholar
  28. 28.
    Gockley R, Forlizzi J, Simmons R (2007) Natural person following behavior for social robots. Hum Robot InteractGoogle Scholar
  29. 29.
    Goffman E (1963) Behavior in public places. Free Press, New YorkGoogle Scholar
  30. 30.
    Greenberg CI, Strube MJ, Myers RA (1980) A multitrait-multimethod investigation of interpersonal distance. J Nonverbal Behav 5:104–114CrossRefGoogle Scholar
  31. 31.
    Greenberg S, Marquardt N, Ballendat T, Diaz-Marino R, Wang M (2011) Proxemic interactions: the new ubicomp? Interactions 18(1):42–50CrossRefGoogle Scholar
  32. 32.
    Groh G, Lehmann A, Reimers J, Friess M, Schwarz L (2010) Detecting social situations from interaction geometry. In: IEEE second international conference on social computing, pp 1–8Google Scholar
  33. 33.
    Hall ET (1966) The hidden dimension: man’s use of space in public and private. The Bodley Head Ltd, LondonGoogle Scholar
  34. 34.
    Hansen ST, Svenstrup M, Andersen HJ, Bak T (2009) Adaptive human aware navigation based on motion pattern analysis. The 18th IEEE international symposium on robot and human interactive communicationGoogle Scholar
  35. 35.
    Hayashi K, Shiomi M, Kanda T, Hagita N (2011) Friendly patrolling: a model of natural encounters. In: Robotics: science and systemsGoogle Scholar
  36. 36.
    Hayduk L (1981a) The permeability of personal space. Can J Behav Sci 13:274–287CrossRefGoogle Scholar
  37. 37.
    Hayduk L (1981b) The shape of personal space: an experimental investigation. Can J Behav Sci 13:87–93CrossRefGoogle Scholar
  38. 38.
    Hayduk L (1994) Personal space: understanding the simplex model. J Nonverbal Behav 18:245–260. doi:10.1007/BF02170028 CrossRefGoogle Scholar
  39. 39.
    Hayduk LA (1978) Personal space: an evaluative and orienting overview. Psychol Bull 85:117–134CrossRefGoogle Scholar
  40. 40.
    Helbing D, Molnar P (1995) Social force model for pedestrian dynamics. Phys Rev 51:4282–4286Google Scholar
  41. 41.
    Higuchi T, Imanaka K, Patla AE (2006) Action-oriented representation of peripersonal and extrapersonal space: insights from manual and locomotor actions1. Jpn Psychol Res 48(3):126–140CrossRefGoogle Scholar
  42. 42.
    Hogan K, Stubbs R (2003) Can’t get through: eight barriers to communication. Pelican Publishing, GrentaGoogle Scholar
  43. 43.
    Huettenrauch H, Eklundh K, Green A, Topp E (2006) Investigating spatial relationships in human-robot interaction. In: IEEE/RSJ international conference on intelligent robots and systems, pp 5052–5059Google Scholar
  44. 44.
    ISO 13482 (2014) Robots and robotic devices safety requirements for personal care robotsGoogle Scholar
  45. 45.
    Jeffrey P, Mark G (2003) Navigating the virtual landscape: coordinating the shared use of space. In: Hk K, Benyon D, Munro AJ (eds) Designing information spaces: the social navigation approach. Computer supported cooperative work. Springer, London, pp 105–124CrossRefGoogle Scholar
  46. 46.
    Kahn PH, Freier NG, Kanda T, Ishiguro H, Ruckert JH, Severson RL, Kane SK (2008) Design patterns for sociality in human-robot interactionGoogle Scholar
  47. 47.
    Kanda T, Shiomi M, Miyashita Z, Ishiguro H, Hagita N (2009) An affective guide robot in a shopping mall. In: ACM/IEEE international conference on Human robot interaction, pp 173–180Google Scholar
  48. 48.
    Kendon A (2010) Spacing and orientation in co-present interaction. Development of multimodal interfaces: active listening and synchrony, lecture notes in computer science, vol 5967. Springer, Berlin, pp 1–15Google Scholar
  49. 49.
    Kennedy DP, Glascher J, Tyszka JM, Adolphs R (2009) Personal space regulation by the human amygdala. Nat Neurosci 12(10):1226–1227CrossRefGoogle Scholar
  50. 50.
    Kirby R, Simmons R, Forlizzi J (2009) Companion: a constraint-optimizing method for person acceptable navigation. The 18th IEEE international symposium on robot and human interactive communicationGoogle Scholar
  51. 51.
    Kitazawa K, Fujiyama T (2010) Pedestrian vision and collision avoidance behavior: investigation of the information process space of pedestrians using an eye tracker. In: Pedestrian and evacuation dynamics 2008, chap 7. Springer, Berlin, pp 95–108Google Scholar
  52. 52.
    Knowles ES, Kreuser B, Haas S, Hyde M, Schuchart GE (1976) Group size and the extension of social space boundaries. J Personal Soc Psychol 33:647–654CrossRefGoogle Scholar
  53. 53.
    Krueger J (2011) Extended cognition and the space of social interaction. Conscious Cognit 20(3):643–657CrossRefGoogle Scholar
  54. 54.
    Kruse T, Basili P, Glasauer S, Kirsch A (2012) Legible robot navigation in the proximity of moving humans. In: Workshop on advanced robotics and its social Impacts, pp 83–88Google Scholar
  55. 55.
    Kuderer M, Kretzschmar H, Sprunk C, Burgard W (2012) Feature-based prediction of trajectories for socially compliant navigation. In: Proceedings of robotics: science and systems. SydneyGoogle Scholar
  56. 56.
    Kuzuoka H, Suzuki Y, Yamashita J, Yamazaki K (2010) Reconfiguring spatial formation arrangement by robot body orientation. In: Proceedings of the 5th ACM/IEEE international conference on human-robot interaction. IEEE Press, Piscataway, pp 285–292Google Scholar
  57. 57.
    Lam CP, Chou CT, Chiang KH, Fu LC (2011) Human-centered robot navigation, towards a harmoniously human-robot coexisting environment. IEEE Trans Robot 27(1):99–112CrossRefGoogle Scholar
  58. 58.
    Lamarche F, Donikian S (2004) Crowd of virtual humans: a new approach for real time navigation in complex and structured environments. Comput Graph Forum 23:509–518CrossRefGoogle Scholar
  59. 59.
    Lindner F, Eschenbach C (2011) Towards a formalization of social spaces for socially aware robots. In: Proceedings of the 10th international conference on spatial information theory, Springer, Berlin, COSIT’11, pp 283–303Google Scholar
  60. 60.
    Lloyd DM (2009) The space between us: a neurophilosophical framework for the investigation of human interpersonal space. Neurosci Biobehav Rev 33(3):297–304CrossRefGoogle Scholar
  61. 61.
    Marquardt N, Diaz-Marino R, Boring S, Greenberg S (2011) The proximity toolkit: prototyping proxemic interactions in ubiquitous computing ecologies. In: Proceedings of the 24th annual ACM symposium on user interface software and technology, pp 315–326Google Scholar
  62. 62.
    Marshall P, Rogers Y, Pantidi N (2011) Using f-formations to analyse spatial patterns of interaction in physical environments. In: Proceedings of the ACM 2011 conference on computer supported cooperative work, pp 445–454Google Scholar
  63. 63.
    Mead R, Atrash A, Matarić MJ (2011) Proxemic feature recognition for interactive robots: automating metrics from the social sciences. In: Proceedings of the third international conference on social robotics. Springer, Berlin, pp 52–61Google Scholar
  64. 64.
    Mehu M, Scherer KR (2012) A psycho-ethological approach to social signal processing. Cognit Process 13(2):397–414CrossRefGoogle Scholar
  65. 65.
    Michalowski M, Sabanovic S, Simmons R (2006) A spatial model of engagement for a social robot. In: 9th IEEE international workshop on advanced motion control, pp 762–767Google Scholar
  66. 66.
    Miklosi A, Gacsi M (2012) On the utilisation of social animals as a model for social robotics. Front Psychol 3:75CrossRefGoogle Scholar
  67. 67.
    Morales Saiki LY, Satake S, Huq R, Glas D, Kanda T, Hagita N (2012) How do people walk side-by-side?: using a computational model of human behavior for a social robot. In: 7th ACM/IEEE international conference on human-robot interaction, pp 301–308Google Scholar
  68. 68.
    Morgado N, Muller D, Gentaz E, Palluel-Germain R (2011) Close to me? the influence of affective closeness on space perception. Perception 40:877–879CrossRefGoogle Scholar
  69. 69.
    Muller J, Stachniss C, Arras K, Burgard W (2008) Socially inspired motion planning for mobile robots in populated environments. In: International conference on cognitive systems (CogSys)Google Scholar
  70. 70.
    Mumm J, Mutlu B (2011) Human-robot proxemics: physical and psychological distancing in human-robot interaction. In: Proceedings of the 6th international conference on Human-robot interaction, pp 331–338Google Scholar
  71. 71.
    Nakauchi Y, Simmons R (2000) A social robot that stands in line. In: IEEE/RSJ international conference on intelligent robots and systems, vol 1. pp 357–364Google Scholar
  72. 72.
    Ohki T, Nagatani K, Yoshida K (2010) Collision avoidance method for mobile robot considering motion and personal spaces of evacuees. In: IEEE/RSJ international conference on intelligent robots and systems, pp 1819–1824Google Scholar
  73. 73.
    Pacchierotti E, Christensen HI, Jensfelt P (2006) Design of an office-guide robot for social interaction studies. In: IEEE/RSJ international conference on intelligent robots and systemsGoogle Scholar
  74. 74.
    Pacchierotti E, Jensfelt P, Christensen H (2007) Tasking everyday interaction. In: Laugier C, Chatila R (eds) Autonomous navigation in dynamic environments, springer tracts in advanced robotics, vol 35. Springer, Berlin, pp 151–168CrossRefGoogle Scholar
  75. 75.
    Pandey A, Alami R (2010) A framework towards a socially aware mobile robot motion in human-centered dynamic environment. In: IEEE/RSJ international conference on intelligent robots and systems, pp 5855–5860Google Scholar
  76. 76.
    Papadakis P, Spalanzani A, Laugier C (2013) Social mapping of human-populated environments by implicit function learning. In: IEEE international conference on intelligent robots and systemsGoogle Scholar
  77. 77.
    Park S, Trivedi MM (2007) Multi-person interaction and activity analysis: a synergistic track- and body-level analysis framework. Mach Vis Appl 18(3):151–166CrossRefMATHGoogle Scholar
  78. 78.
    Patterson M, Iizuka Y, Tubbs M, Ansel J, Tsutsumi M, Anson J (2007) Passing encounters east and west: comparing japanese and american pedestrian interactions. J Nonverbal Behav 31:155–166CrossRefGoogle Scholar
  79. 79.
    Ratsamee P, Mae Y, Ohara K, Takubo T, Arai T (2012) Modified social force model with face pose for human collision avoidance. In: Proceedings of the seventh annual ACM/IEEE international conference on human-robot interaction. ACM, New York, pp 215–216Google Scholar
  80. 80.
    Rios-Martinez J, Spalanzani A, Laugier C (2011) Understanding human interaction for probabilistic autonomous navigation using Risk-RRT approach. In: IEEE/RSJ international conference on intelligent robots and systems, pp 2014–2019Google Scholar
  81. 81.
    Rios-Martinez J, Renzaglia A, Spalanzani A, Martinelli A, Laugier C (2012) Navigating between people: a stochastic optimization approach. In: IEEE international conference on robotics and automation, pp 2880–2885Google Scholar
  82. 82.
    Satake S, Kanda T, Glas DF, Imai M, Ishiguro H, Hagita N (2009) How to approach humans. Strategies for social robots to initiate interactionGoogle Scholar
  83. 83.
    Sciutti A, Bisio A, Nori F, Metta G, Fadiga L, Pozzo T, Sandini G (2012) Measuring human-robot interaction through motor resonance. Int J Soc Robot 4:223–234CrossRefGoogle Scholar
  84. 84.
    Sehestedt S, Kodagoda S, Dissanayake G (2010) Robot path planning in a social context. In: IEEE conference on robotics automation and mechatronics, pp 206–211Google Scholar
  85. 85.
    Sheflen AE (1976) Human territories: how we behave in space and time. Prentice Hall, Englewood CliffsGoogle Scholar
  86. 86.
    Shi C, Shimada M, Kanda T, Ishiguro H, Hagita N (2011) Spatial formation model for initiating conversation. In: Robotics: science and systemsGoogle Scholar
  87. 87.
    Sisbot EA, Marin-Urias LF, Alami R, Simeon T (2007) A human aware mobile robot motion planner. IEEE Trans Robot 23:874–883CrossRefGoogle Scholar
  88. 88.
    Sisbot EA, Marin-Urias LF, Broqure X, Sidobre D, Alami R (2010) Synthesizing robot motions adapted to human presence—a planning and control framework for safe and socially acceptable robot motions. Int J Soc Robot 2:329–343CrossRefGoogle Scholar
  89. 89.
    Sommer R (2002) From personal space to cyberspace, serie: Textos de psicologia ambiental, no. 1. brasiliaGoogle Scholar
  90. 90.
    Spalanzani A, Rios-Martinez J, Laugier C, Lee S (2012) Handbook of intelligent vehicles, chap risk based navigation decisions, Springer, pp 1459–1477Google Scholar
  91. 91.
    Stein P, Spalanzani A, Laugier C, Santos V (2012) Leader selection and following in dynamic environments. In: 12th international conference on control automation robotics vision, pp 124–129Google Scholar
  92. 92.
    Svenstrup M, Tranberg S, Andersen H, Bak T (2009) Pose estimation and adaptive robot behaviour for human-robot interaction. In: IEEE international conference on robotics and automation, pp 3571–3576Google Scholar
  93. 93.
    Svenstrup M, Bak T, Andersen H (2010) Trajectory planning for robots in dynamic human environments. In: IEEE/RSJ international conference on intelligent robots and systems, pp 4293–4298Google Scholar
  94. 94.
    Takayama L, Pantofaru C (2009) Influences on proxemic behaviors in human-robot interaction. In: IEEE/RSJ international conference on intelligent robots and systemsGoogle Scholar
  95. 95.
    Tamura Y, Fukuzawa T, Asama H (2010) Smooth collision avoidance in human-robot coexisting environment. In: IEEE/RSJ international conference on intelligent robots and systems, pp 3887–3892Google Scholar
  96. 96.
    Thompson DE, Aiello JR, Epstein YM (1979) Interpersonal distance preferences. J Nonverbal Behav 4:113–118CrossRefGoogle Scholar
  97. 97.
    Tipaldi GD, Arras KO (2011) Please do not disturb! minimum interference coverage for social robots. In: IEEE/RSJ international conference on intelligent robots and systems, pp 1968–1973Google Scholar
  98. 98.
    Topp E, Christensen H (2005) Tracking for following and passing persons. In: IEEE/RSJ international conference on intelligent robots and systems, pp 2321–2327Google Scholar
  99. 99.
    Torta E, Cuijpers R, Juola J, van der Pol D (2011) Design of robust robotic proxemic behaviour. In: Mutlu B, Bartneck C, Ham J, Evers V, Kanda T (eds) Social robotics, vol 7072., Lecture notes in computer scienceSpringer, Berlin, pp 21–30CrossRefGoogle Scholar
  100. 100.
    Turner A, Penn A (2002) Encoding natural movement as an agent-based system: an investigation into human pedestrian behaviour in the built environment. Environ Plan B 29(4):473–490CrossRefGoogle Scholar
  101. 101.
    Vinciarelli A, Pantic M, Bourlard H, Pentland A (2008) Social signal processing: state-of-the-art and future perspectives of an emerging domain. In: Proceedings of the 16th ACM international conference on multimedia, pp 1061–1070Google Scholar
  102. 102.
    Walters ML, Dautenhahn K, te Boekhorst R, Koay KL, Syrdal DS, Nehaniv CL (2009) An empirical framework for human-robot proxemics. In: Proceedings new frontiers in human-robot interaction.Google Scholar
  103. 103.
    Wang M, Boring S, Greenberg S (2012) Proxemic peddler: a public advertising display that captures and preserves the attention of a passerby. In: Proceedings of the 2012 international symposium on pervasive displays, pp 3:1–3:6Google Scholar
  104. 104.
    Yamaoka F, Kanda T, Ishiguro H, Hagita N (2009) Developing a model of robot behavior to identify and appropriately respond to implicit attention-shifting. In: ACM/IEEE international conference on Human robot interaction, pp 133–140Google Scholar
  105. 105.
    Yamaoka F, Kanda T, Ishiguro H, Hagita N (2010) A model of proximity control for information-presenting robots. IEEE Trans Robot 26(1):187–195CrossRefGoogle Scholar
  106. 106.
    Yamazaki K, Kawashima M, Kuno Y, Akiya N, Burdelski M, Yamazaki A, Kuzuoka H (2007) Prior-to-request and request behaviors within elderly day care: implications for developing service robots for use in multiparty settings. In: European conference on computer-supported cooperative work, pp 61–78Google Scholar
  107. 107.
    Yanco H, Drury J (2004) Classifying human-robot interaction: an updated taxonomy. In: IEEE international conference on systems, man and cybernetics, vol 3. pp 2841–2846Google Scholar
  108. 108.
    Zender H, Jensfelt P, Kruijff GJ (2007) Human- and situation-aware people following. In: 16th IEEE international symposium on robot and human interactive communication, pp 1131–1136Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Inria, Lab. LIGGrenobleFrance
  2. 2.Univ. Grenoble Alpes, Lab. LIG, InriaGrenobleFrance
  3. 3.FMAT - Universidad Autónoma de YucatánMéridaMexico

Personalised recommendations