Skip to main content
Log in

Designing Enjoyable Motion-Based Play Interactions with a Small Humanoid Robot

  • Published:
International Journal of Social Robotics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Robots designed to co-exist with humans in domestic and public environments should be capable of interacting with people in an enjoyable fashion in order to be socially accepted. In this research, we seek to set up a small humanoid robot with the capability to provide enjoyment to people who pick up the robot and play with it by hugging, shaking and moving the robot in various ways. Inertial sensors inside a robot can capture how its body is moved when people perform such “full-body gestures”. Unclear is how a robot can recognize what people do during play, and how such knowledge can be used to provide enjoyment. People’s behavior is complex, and naïve designs for a robot’s behavior based only on intuitive knowledge from previous designs may lead to failed interactions. To solve these problems, we model people’s behavior using typical full-body gestures observed in free interaction trials, and devise an interaction design based on avoiding typical failures observed in play sessions with a naïve version of our robot. The interaction design is completed by investigating how a robot can provide “reward” and itself suggest ways to play during an interaction. We then verify experimentally that our design can be used to provide enjoyment during a playful interaction. By describing the process of how a small humanoid robot can be designed to provide enjoyment, we seek to move one step closer to realizing companion robots which can be successfully integrated into human society.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Parts of this work have been previously presented [6, 7].

  2. Two earlier conference papers first described our approach for recognizing gestures [6] and how this information can be applied [7]. The current article chronicles the whole design process from start to finish in one place, providing additional details, and offers new results needed to support our finding that the proposed solution is effective toward providing enjoyment.

References

  1. Barnett K (1972) A theoretical construct of the concepts of touch as they relate to nursing. Nurse Res 21:102–110. doi:10.1097/00006199-197203000-00002

    Google Scholar 

  2. Brooke J (1996) SUS: a quick and dirty usability scale. In: Jordan PW, Thomas B, Weerdmeester BA, McClelland AL (eds) Usability evaluation in industry. Taylor & Francis, London

    Google Scholar 

  3. Brooks AG, Arkin RC (2007) Behavioral overlays for non-verbal communication expression on a humanoid robot. Auton Robots 22(1):55–74. doi:10.1007/s10514-006-9005-8

    Article  Google Scholar 

  4. Chang C, Hsu C, Lin C (2003) A practical guide to support vector classification. In: Taipei, Taiwan, vol 106

    Google Scholar 

  5. Chang C, Lin C (2001) LIBSVM: a library for support vector machines. http://www.csie.ntu.edu.tw/cjlin/libsvm. Accessed 25 July 2013

  6. Cooney MD, Becker-Asano C, Kanda T, Alissandrakis A, Ishiguro H (2010) Full-body gesture recognition using inertial sensors for playful interaction with small humanoid robot. In: IEEE/RSJ international conference on intelligent robots and systems (IROS 2010), pp 2276–2282. doi:10.1109/IROS.2010.5650081

    Chapter  Google Scholar 

  7. Cooney MD, Kanda T, Alissandrakis A, Ishiguro H (2011) Interaction design for an enjoyable play interaction with a small humanoid robot. In: 2011 IEEE–RAS international conference on humanoid robots, humanoids, pp 112–119. doi:10.1109/Humanoids.2011.6100847

    Chapter  Google Scholar 

  8. Cramer H, Mentis H, Fernaeus Y (2010) Serious work on playful experiences: a preliminary set of challenges. In: Fun, seriously? Workshop at CSCW 2010

    Google Scholar 

  9. Csíkszentmihályi M, Rathunde K (1993) The measurement of flow in everyday life: towards a theory of emergent motivation. In: Jacobs JE (ed) Developmental perspectives on motivation. Nebraska symposium on motivation, University of Nebraska Press, Lincoln

    Google Scholar 

  10. Csíkszentmihályi M (1975) Beyond boredom and anxiety: experiencing flow in work and play. Jossey-Bass, San Francisco

    Google Scholar 

  11. Dautenhahn K, Nehaniv CL, Walters ML, Robins B, Kose-Bagci H, Mirza NA, Blow M (2009) KASPAR—a minimally expressive humanoid robot for human-robot interaction research. Appl Bionics Biomech (special issue on humanoid robots) 6(3):369–397. doi:10.1080/11762320903123567

    Article  Google Scholar 

  12. Ellis MJ (1973) Why people play. Prentice-Hall, New Jersey

    Google Scholar 

  13. Festinger L (1957) A theory of cognitive dissonance. Stanford University Press, Stanford

    Google Scholar 

  14. Fujita M (2004) On activating human communications with pet-type robot AIBO. Proc IEEE 92(11):1804–1813. doi:10.1109/JPROC.2004.835364

    Article  Google Scholar 

  15. Garfinkel H (1967) Studies in ethnomethodology. Prentice-Hall, New Jersey

    Google Scholar 

  16. Geldard FA (1960) Some neglected possibilities of communication. Science 131:1583–1588. doi:10.1126/science.131.3413.1583

    Article  Google Scholar 

  17. Goetz J, Kiesler S, Powers A (2003) Matching robot appearance and behavior to tasks to improve human-robot cooperation. In: 2003 IEEE international workshop on robots and human interactive communications (RO-MAN 2003), pp 55–60. doi:10.1109/ROMAN.2003.1251796

    Chapter  Google Scholar 

  18. Hassenzahl M, Burmester M, Koller F (2003) AttrakDiff: Ein Fragebogen zur Messung wahrgenommener hedonischer und pragmatischer Qualität. In: Mensch & Computer, Interaktion in Bewegung, pp 187–196 (in German)

    Google Scholar 

  19. Hayashi K, Shiomi M, Kanda T, Hagita N (2010) Who is appropriate? A robot, human and mascot perform three troublesome tasks. In: 2010 IEEE international workshop on robots and human interactive communications (RO-MAN 2010), pp 348–354. doi:10.1109/ROMAN.2010.5598661

    Google Scholar 

  20. Heerink M, Kröse BJA, Wielinga BJ, Evers V (2008) Enjoyment, intention to use and actual use of a conversational robot by elderly people. In: Proceedings of the 3rd ACM/IEEE international conference on human-robot interaction (HRI 2008), pp 113–119. doi:10.1145/1349822.1349838

    Google Scholar 

  21. Heider F, Simmel M (1944) An experimental study of apparent behavior. Am J Psychol 57:243–259. doi:10.2307/1416950

    Article  Google Scholar 

  22. Huizinga J (1950) Homo ludens: a study of the play element in culture. Roy Publishers/The Beacon Press, Boston

    Google Scholar 

  23. Kahn PH, Freier NG, Kanda T, Ishiguro H, Ruckert JH, Severson RL, Kane SK (2008) Design patterns for sociality in human-robot interaction. In: Proceedings of the 3rd ACM/IEEE international conference on human robot interaction (HRI 2008), pp 97–104. doi:10.1145/1349822.1349836

    Google Scholar 

  24. Knight H, Chang A, Breazeal C et al (2009) Robot design rubrics for social gesture categorization and user studies with children. In: HRI workshop on acceptance of robots in society

    Google Scholar 

  25. Kozima H, Michalowski MP, Nakagawa C (2009) Keepon: a playful robot for research, therapy, and entertainment. Int J Soc Robot 1(1):3–18. doi:10.1007/s12369-008-0009-8

    Article  Google Scholar 

  26. Kraus MW, Huang C, Keltner D (2010) Tactile communication, cooperation, and performance: an ethological study of the NBA. Emotion 10:745–749. doi:10.1037/a0019382

    Article  Google Scholar 

  27. Kulic D, Ott C, Lee D, Ishikawa J, Nakamura Y (2012) Incremental learning of full body motion primitives and their sequencing through human motion observation. Int J Robot Res 31(3):330–345. doi:10.1177/0278364911426178

    Article  Google Scholar 

  28. Lewis C, Rieman J (1993) Task-centered user interface design: a practical introduction. Internet: HCI bibliography: human-computer interaction resources http://www.hcibib.org/tcuid/index.html. Accessed July 25 2013

  29. Michalowski MP, Sabanovic S, Michel P (2006) Roillo: creating a social robot for playrooms. In: 2006 IEEE international workshop on robots and human interactive communications (RO-MAN 2006), pp 587–592. doi:10.1109/ROMAN.2006.314453

    Google Scholar 

  30. Movellan JR (2005) An infomax controller for real time detection of social contingency. In: Proceedings of the 4th international conference on development and learning (ICDL05)

    Google Scholar 

  31. Nakatsu R, Rauterberg M, Vorderer P (2005) A new framework for entertainment computing: from passive to active experience. In: Kishino F, Kitamura Y, Kato H, Nagata N (eds) Entertainment computing—ICEC. Lecture notes in computer science (LNCS), vol 3711. Springer, Berlin, pp 1–12

    Google Scholar 

  32. Nielsen J, Molich R (1990) Heuristic evaluation of user interfaces. In: Proc. of ACM CHI’90 conference, pp 249–256. doi:10.1145/97243.97281

    Google Scholar 

  33. Nomura T, Suzuki T, Kanda T, Kato K (2006) Measurement of negative attitudes toward robots. Interact Stud 7(3):437–454. doi:10.1075/is.7.3.14nom

    Article  Google Scholar 

  34. Robins B, Dautenhahn K, Boekhorst RT, Nehaniv CL (2008) Behaviour delay and robot expressiveness in child-robot interactions: a user study on interaction kinesics. In: Proceedings of the 3rd ACM/IEEE international conference on human robot interaction (HRI 2008), pp 17–24. doi:10.1145/1349822.1349826

    Google Scholar 

  35. Salter T, Michaud F, Dautenhahn K, Letourneau D, Caron S (2005) Recognizing interaction from a robot’s perspective. In: 2005 IEEE international workshop on robots and human interactive communications (RO-MAN 2005), pp 178–183. doi:10.1109/ROMAN.2005.1513776

    Chapter  Google Scholar 

  36. Salter T, Michaud F, Letourneau D, Lee DC, Werry IP (2007) Using proprioceptive sensors for categorizing human-robot interactions. In: Proceedings of the 2nd ACM/IEEE international conference on human robot interaction (HRI 2007), pp 105–112. doi:10.1145/1228716.1228731

    Chapter  Google Scholar 

  37. Satake S, Kanda T, Glas DF, Imai M, Ishiguro H, Hagita N (2009) How to approach humans? Strategies for social robots to initiate interaction. In: Proceedings of the 4th ACM/IEEE international conference on human robot interaction (HRI 2009), pp 109–116. doi:10.1145/1514095.1514117

    Google Scholar 

  38. Shneiderman B, Plaisant C (2004) Designing the user interface: strategies for effective human-computer interaction, 4th edn. Pearson/Addison/Wesley, Boston

    Google Scholar 

  39. Stiehl W, Breazeal C (2005) Design of a therapeutic robotic companion for relational, affective touch. In: 2005 IEEE international workshop on robots and human interactive communications (RO-MAN 2005), pp 408–415. doi:10.1007/11573548_96

    Chapter  Google Scholar 

  40. Takayama L, Ju W, Nass C (2008) Beyond dirty, dangerous and dull: what everyday people think robots should do. In: Proceedings of the 3rd ACM/IEEE international conference on human robot interaction (HRI 2008), pp 25–32. doi:10.1145/1349822.1349827

    Google Scholar 

  41. Tanaka F, Cicourel A, Movellan JR (2007) Socialization between toddlers and robots at an early childhood education center. Proc Natl Acad Sci USA 104(46):17954–17958. doi:10.1073/pnas.0707769104

    Article  Google Scholar 

  42. Tanaka F, Movellan JR, Fortenberry B, Aisaka K (2006) Daily Hri evaluation at a classroom environment: reports from dance interaction experiments. In: Proceedings of the 1st ACM/IEEE international conference on human robot interaction (HRI 2006), pp 3–9. doi:10.1145/1121241.1121245

    Google Scholar 

  43. Turkle S (2006) A nascent robotics culture: new complicities for companionship. AAAI technical report series

  44. Turkle S, Breazeal C, Scasselati B, Dasté O (2004) Encounters with Kismet and Cog: children’s relationships with humanoid robots. In: 2004 IEEE–RAS international conference on humanoid robots (Humanoids 2004)

    Google Scholar 

  45. Venkatesh V (2000) Determinants of perceived ease of use: integrating control, intrinsic motivation, and emotion into the technology acceptance model. Inf Syst Res 11:342–365. doi:10.1287/isre.11.4.342.11872

    Article  Google Scholar 

  46. Viola P, Jones M (2001) Robust real time object detection. In: IEEE ICCV workshop statistical and computational theories of vision, Vancouver, Canada

    Google Scholar 

  47. Vorderer P, Klimmt C, Ritterfeld U (2004) Enjoyment: at the heart of media entertainment. Commun Theory 14:388–408. doi:10.1111/j.1468-2885.2004.tb00321.x

    Article  Google Scholar 

  48. Wada K, Shibata T (2007) Living with seal robots-its sociopsychological and physiological influences on the elderly at a care house. IEEE Trans Robot 23(5):972–980. doi:10.1109/TRO.2007.906261

    Article  Google Scholar 

  49. Watson D, Clark LA, Tellegan A (1988) Development and validation of brief measures of positive and negative affect: the PANAS scales. J Pers Soc Psychol 54(6):1063–1070. doi:10.1037/0022-3514.54.6.1063

    Article  Google Scholar 

  50. Williams LE, Bargh JA (2008) Experiencing physical warmth promotes interpersonal warmth. Science 322:606–607. doi:10.1126/science.1162548

    Article  Google Scholar 

  51. Yi MY, Hwang Y (2003) Predicting the use of web-based information systems: self-efficacy, enjoyment, learning goal orientation, and the technology acceptance model. Int J Hum-Comput Stud 59(4):431–449. doi:10.1016/S1071-5819(03)00114-9

    Article  Google Scholar 

  52. Yohanan S, MacLean KE (2012) The role of affective touch in human-robot interaction: human intent and expectations in touching the haptic creature. Int J Soc Robot 4(2):163–180. doi:10.1007/s12369-011-0126-7

    Article  Google Scholar 

  53. Vapnik V, Golowich S, Smola A (1996) Support vector method for function approximation, regression estimation, and signal processing. Adv Neural Inf Process Syst 9:281–287

    Google Scholar 

Download references

Acknowledgements

We would like to thank everyone who helped with this project. This research was supported by the Ministry of Internal Affairs and Communications of Japan and JST, CREST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Cooney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooney, M., Kanda, T., Alissandrakis, A. et al. Designing Enjoyable Motion-Based Play Interactions with a Small Humanoid Robot. Int J of Soc Robotics 6, 173–193 (2014). https://doi.org/10.1007/s12369-013-0212-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12369-013-0212-0

Keywords

Navigation