Skip to main content
Log in

Design of a Parametric Model of Personal Space for Robotic Social Navigation

  • Published:
International Journal of Social Robotics Aims and scope Submit manuscript

Abstract

The design of socially acceptable behaviours is becoming one major issue for the development of robots that are able to interact with humans in unconstrained environments. In particular, social behaviours such as gazing, mutual positioning or gesturing allow robots to initiate and maintain an information exchange with humans. This paper focuses on (1) the study of mutual positioning between a small humanoid robot and a person through two psychometric experiments and (2) the design of a parametric model of the personal space based on the results of the two experiments. Results suggest that human–human interpersonal distances are shorter than human–robot interpersonal distances during a communication exchange, at least for the small humanoid robot used in our experiments. We also found that participants evaluate different directions of approach in a significantly different way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Amaoka T, Laga H, Yoshie M, Nakajima M (2011) Personal space-based simulation of non-verbal communications. Entertain Comput 2(4):245–261. Special section: international conference on entertainment computing and special section: entertainment interfaces

    Article  Google Scholar 

  2. Arulampalam MS, Makel S, Gordon N, Clapp T (2002) A tutorial on particle filters for online nonlinear/non-gaussian Bayesian tracking. IEEE Trans Signal Process, 50

  3. Estela B (1999) Dynamic approach to behavior-based robotics. PhD thesis, University of Minho

  4. Chidambaram V, Chiang YH, Mutlu B (2012) Designing persuasive robots: how robots might persuade people using vocal and nonverbal cues. In: HRI, 2012, Boston, USA

    Google Scholar 

  5. Dautenhahn K, Walters M, Woods S, Koay KL, Nehaniv CL, Sisbot A, Alami R, Siméon T (2006) How may I serve you? In: Proceedings of HRI 2006, pp 172–179

    Google Scholar 

  6. Hall ET (1966) The hidden dimension. Doubleday, New York

    Google Scholar 

  7. Ham J, Bokhorst R, Cuijpers R, van der Pol D, Cabibihan J-J (2011) Making robots persuasive: the influence of combining persuasive strategies (gazing and gestures) by a storytelling robot on its persuasive power. In: Mutlu B, Bartneck C, Ham J, Evers V, Kanda T (eds) Social robotics. Lecture notes in computer science, vol 7072. Springer, Berlin/Heidelberg, pp 71–83

    Chapter  Google Scholar 

  8. Johnson DO, Agah A (2009) Human robot interaction through semantic integration of multiple modalities, dialog management, and contexts. Int J Soc Robot 1(4):283–305

    Article  Google Scholar 

  9. Dautenhahn K (2007) Socially intelligent robots: dimensions of human–robot interaction. In: The royal society, pp 679–704

    Google Scholar 

  10. Kirby R (2010) Social robot navigation. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, May 2010

  11. Kristoffersson A, Eklundh KS, Loutfi A (2013) Measuring the quality of interaction in mobile robotic telepresence: a pilot’s perspective. Int J Soc Robot 5(1):89–101

    Article  Google Scholar 

  12. Lambert D (2004) Body language. Harper Collins, London

    Google Scholar 

  13. Mumm J, Mutlu B (2011) Human–robot proxemics: physical and psychological distancing in human–robot interaction. In: Proceedings of HRI 2011

    Google Scholar 

  14. Mutlu B, Kanda T, Forlizzi J, Hodgins J, Ishiguro H (2012) Conversational gaze mechanisms for humanlike robots. ACM Trans Interact Intell Syst 1(2):12:1–12:33

    Article  Google Scholar 

  15. Pacchierotti E, Christensen HI, Jensfelt P (2007) Evaluation of passing distance for social robots. In: Robot and human interactive communication, 2006. ROMAN 2006. The 15th IEEE international symposium on robot and human interactive communication. IEEE Press, New York, pp 315–320

    Google Scholar 

  16. Salem M, Eyssel F, Rohlfing K, Kopp S, Joublin F (2011) Effects of gesture on the perception of psychological anthropomorphism: a case study with a humanoid robot. In: Mutlu B, Bartneck C, Ham J, Evers V, Kanda T (eds) Social robotics. Lecture notes in computer science, vol 7072. Springer, Berlin/Heidelberg, pp 31–41

    Chapter  Google Scholar 

  17. Sisbot EA, Marin-Urias LF, Broquère X, Sidobre D, Alami R (2010) Synthesizing robot motions adapted to human presence. Int J Soc Robot

  18. Clair AS, Mead R, Mataric MJ (2011) Investigating the effects of visual saliency on deictic gesture production by a humanoid robot. In: RO-MAN, 2011 IEEE, July 31 2011–August 3 2011, pp 210–216

    Chapter  Google Scholar 

  19. Syrdal DS, Koay KL, Walters ML, Dautenhahn K (2007) A personalized robot companion? The role of individual differences on spatial preferences in HRI scenarios. In: Proceedings of RO-MAN 2007, pp 1143–1148

    Google Scholar 

  20. Takayama L, Pantofaru C (2009) Influences on proxemic behaviors in human-robot interaction. In: IEEE/RSJ international conference on intelligent robots and systems, IROS 2009, October, pp 5495–5502

    Google Scholar 

  21. Tapus A, Mataric MJ (2008) Socially assistive robots: the link between personality, empathy, physiological signals, and task performance. In: Proceedings of AAAI spring symposium on emotion personality and social behavior

    Google Scholar 

  22. Thrun S, Burgard W, Fox D (2005) Probabilistic robotics. MIT Press, Cambridge

    MATH  Google Scholar 

  23. Torta E, Cuijpers RH, Juola JF (2011) A model of the user’s proximity for Bayesian inference. In: Proceedings of HRI 2011

    Google Scholar 

  24. Torta E, Cuijpers RH, Juola JF (2012) Dynamic neural field as framework for behaviour coordination in mobile robots. In: World Automation Congress (WAC), 2012. IEEE Press, New York, pp 1–6

    Google Scholar 

  25. Torta E, Cuijpers R, Juola J, van der Pol D (2011) Design of robust robotic proxemic behaviour. In: Mutlu B, Bartneck C, Ham J, Evers V, Kanda T (eds) Social robotics. Lecture notes in computer science, vol 7072. Springer, Berlin/Heidelberg, pp 21–30

    Chapter  Google Scholar 

  26. Torta E, Cuijpers R, Juola J, van der Pol D (2012) Modeling and testing proxemic behavior for humanoid robots. Int J Humanoid Robot 09(04):1250028

    Article  Google Scholar 

  27. Walters ML, Dautenhahn K, Boekhorst R, Koay KL, Syrdal DS, Nehaniv C (2009) An empirical framework for human-robot proxemics. In: AISB 2009

    Google Scholar 

  28. Yamaoka F, Kanda T, Ishiguro H, Hagita N (2010) A model of proximity control for information-presenting robots. IEEE Trans Robot 26(1):187–195

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results is part of the KSERA project (http://www.ksera-project.eu) and has received funding from the European Commission under the 7th Framework Programme (FP7) for Research and Technological Development under grant agreement No. 2010-248085. The authors gratefully acknowledge the work done by James Loma, Joey and Richie Baten, Frank Basten, Jiri Fajta and Jan Roelof de Pijper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Torta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torta, E., Cuijpers, R.H. & Juola, J.F. Design of a Parametric Model of Personal Space for Robotic Social Navigation. Int J of Soc Robotics 5, 357–365 (2013). https://doi.org/10.1007/s12369-013-0188-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12369-013-0188-9

Keywords

Navigation