Skip to main content
Log in

Fault-Tolerant Force in Human and Robot Cooperation

  • Published:
International Journal of Social Robotics Aims and scope Submit manuscript

Abstract

Fault-tolerant solutions greatly benefit the dependability of robotic systems. This advantage is critical for robotic systems that perform in collaboration with humans. This work addresses the fault tolerance of robotic manipulators for cooperatively manipulating an object together with a human. Cooperation occurs for slow lifting or pushing of the object. Reconfiguration of the manipulator is performed to maintain the cooperative force level despite the occurrence of robot joint failures. We present several strategies that are investigated for optimally maintaining the required force level for human-robot task cooperation. For each strategy, a reconfiguration control law is introduced that optimises the fault tolerance of the maintained force level. Three case studies are introduced to validate the proposed reconfiguration laws,demonstrating that this approach results in an optimal fault-tolerant force in human-robot cooperation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lallee S, Yoshida E, Mallet A, Nori F, Natale L, Metta G, Warneken F, Dominey P (2010) Human-robot cooperation based on interaction learning. In: Sigaud O, Peters J (eds) From motor learning to interaction learning in robots. Studies in computational intelligence, vol 264. Springer, Berlin, pp 491–536

    Chapter  Google Scholar 

  2. López M, Barea R, Bergasa L, Escudero M (2004) A human–robot cooperative learning system for easy installation of assistant robots in new working environments. J Intell Robot Syst 40:233–265

    Article  Google Scholar 

  3. Wojtara T, Uchinara M, Murayama H, Shimoda S, Sakai S, Fujimoto H, Kimura H (2009) Human-robot cooperation in precise positioning of a flat object. Automatica 45:333–342

    Article  MATH  Google Scholar 

  4. Heikkilä S, Halme A, Schiele A (2010) Human-human inspired task and object definition for astronaut-robot cooperation. In: Proc. of the 10th international symposium on artificial intelligence, robotics and automation in space (i-SAIRAS)

    Google Scholar 

  5. Bluethmann W, Ambrose R, Diftler M, Askew S, Huber E, Goza M, Rehnmark F, Lovchik C, Magruder D (2003) Robonaut: a robot designed to work with humans in space. Auton Robots 14:179–197

    Article  MATH  Google Scholar 

  6. Kumar R, Berkelman P, Gupta P, Barnes A, Jensen P, Whitcomb L, Taylor R (2000) Preliminary experiments in cooperative human/robot force control for robot assisted microsurgical manipulation. In: Proceeding of the IEEE international conference on robotics and automation, San Francisco, CA, USA, pp 610–617

    Google Scholar 

  7. Kargov A, Asfour T, Pylatiuk C, Oberle R, Klosek H, Schulz S, Regenstein K, Bretthauer G, Dillmann R (2005) Development of an anthropomorphic hand for a mobile assistive robot. In: Proceeding of the IEEE international conference on rehabilitation robotics, Chicago, IL, USA, pp 182–186

    Google Scholar 

  8. Koeppe R, Engelhardt D, Hagenauer A, Heiligensetzer P, Kneifel B, Knipfer A, Stoddard K (2005) Robot-robot and human-robot cooperation in commercial robotics applications. Robot. Res., 202—216

  9. Yong Y, Lan W, Jie T, Lixun Z (2006) Arm rehabilitation robot impedance control and experimentation. In: Proceeding of the IEEE international conference on robotics and biomimetics, pp 914–918

    Chapter  Google Scholar 

  10. Fong T, Nourbakhsh I, Dautenhahn K (2003) A survey of socially interactive robots. Robot Auton Syst 42:143–166

    Article  MATH  Google Scholar 

  11. Abdi H, Nahavandi S (2012) Well-conditioned configurations of fault-tolerant manipulators. Robot Auton Syst 60:242–251

    Article  Google Scholar 

  12. Haddadin S, Albu-Schäffer A, Hirzinger G (2011) Safe physical human-robot interaction: measurements, analysis and new insights. Springer tracts in advanced robotics, vol 66, pp 395–407

    Google Scholar 

  13. Abdi H, Nahavandi S, Masouleh MT (2010) Minimal force jump within human and assistive robot cooperation. In: Proceeding of the IEEE/RSJ international conference on intelligent robots and systems, Taiwan, pp 2651–2656

    Google Scholar 

  14. Alami R, Albu-Schaeffer A, Bicchi A, Bischoff R, Chatila R, De Luca A, De Santis A, Giralt G, Guiochet J, Hirzinger G (2006) Safe and dependable physical human-robot interaction in anthropic domains: state of the art and challenges. In: Proceeding of the IEEE/RSJ international conference on intelligent robots and systems, ‘Workshop on pHRI—physical human-robot interaction in anthropic domains’, pp 1–15

    Google Scholar 

  15. Goetz J, Kiesler S, Powers A (2003) Matching robot appearance and behavior to tasks to improve human-robot cooperation. In: Proceeding of the 12th IEEE international workshop on robot and human interactive communication, pp 55–60

    Google Scholar 

  16. Yamada Y, Yamamoto T, Morizono T, Umetani Y (1999) FTA-based issues on securing human safety in a human/robot coexistence system. In: Proceeding of the IEEE international conference on systems, man, and cybernetics, pp 1058–1063

    Google Scholar 

  17. Kosuge K, Kakuya H, Hirata Y (2001) Control algorithm of dual arms mobile robot for cooperative works with human. In: Proceeding of the IEEE international conference on systems, man, and cybernetics, pp 3223–3228

    Google Scholar 

  18. Tsumugiwa T, Yokogawa R, Hara K (2002) Variable impedance control based on estimation of human arm stiffness for human-robot cooperative calligraphic task. In: Proceeding of the IEEE international conference on robotics and automation, San Diego, CA, USA, pp 644–650

    Google Scholar 

  19. Takubo T, Arai H, Hayashibara Y, Tanie K (2002) Human-robot cooperative manipulation using a virtual nonholonomic constraint. Int J Robot Res 21:541

    Article  Google Scholar 

  20. Harwin WS (2009) Impedance mismatch: some differences between the way humans and robots control interaction forces. In: Proceeding of the IEEE international conference on rehabilitation robotics, p 19

    Chapter  Google Scholar 

  21. Hyowon J, Seul J (2009) Hardware design on an FPGA chip of impedance force control for interaction between a human operator and a robot arm. In: Proceeding of the 7th Asian control conference (ACC), pp 1480–1485

    Google Scholar 

  22. Kye-Young L, Seung-Yeol L, Jong-Ho C, Sang-Heon L, Chang-Soo H (2006) The application of the human-robot cooperative system for construction robot manipulating and installing heavy materials. In: Proceeding of the international joint conference SICE-ICASE, pp 4798–4802

    Google Scholar 

  23. Lamy X, Colledani F, Gutman PO (2010) Identification and experimentation of an industrial robot operating in varying-impedance environments. In: Proceeding of the IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 3138–3143

    Google Scholar 

  24. Minyong P, Mouri K, Kitagawa H, Miyoshi T, Terashima K (2007) Hybrid impedance and force control for massage system by using humanoid multi-fingered robot hand. In: Proceeding of the IEEE international conference on systems, man and cybernetics, pp 3021–3026

    Google Scholar 

  25. Abdi H, Nahavandi S (2010) Fault tolerance force for redundant manipulators. In: Proceeding of the IEEE international conference on advanced computer control, pp 612–617

    Chapter  Google Scholar 

  26. Abdi H, Nahavandi S (2010) Joint velocity redistribution for fault tolerant manipulators. In: Proceeding of the IEEE conference on robotics automation and mechatronics, pp 492–497

    Chapter  Google Scholar 

  27. Abdi H, Nahavandi S, Frayman Y, Maciejewski AA (2011) Optimal mapping of joint faults into healthy joint velocity space for fault tolerant redundant manipulators. Robotica. doi:10.1017/S0263574711000671, pp. 1–14

    Google Scholar 

  28. Corke PI (1996) A robotics toolbox for MATLAB. IEEE Robot Autom Mag 3:24–32

    Article  Google Scholar 

  29. Abdi H, Nahavandi S (2010) Optimal actuator fault tolerance for static nonlinear systems based on minimum output velocity jump. In: Proceeding of the IEEE international conference on information and automation, pp 1165–1170

    Chapter  Google Scholar 

  30. Abdi H, Nahavandi S, Najdovski Z (2010) On the effort of task completion for partially-failed manipulators. In: Proceeding of the IEEE international conference on industrial informatics, pp 201–206

    Google Scholar 

  31. Abdi H, Nahavandi S, Najdovski Z (2010) Fault tolerance operation of cooperative manipulators. In: Proceeding of the IEEE international symposium on artificial intelligence, robotics and automation in space, Japan, pp 144–151

    Google Scholar 

Download references

Acknowledgements

This research was supported by Centre for Intelligent Systems Research—Deakin University in part with U.S. National Science Foundation under contract IIS-0812437.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Abdi.

Appendices

Appendix A

The pseudo inverse of full rank square matrices is obtained by regular inverse or

$$\mathbf{B}^{\dag} = \mathbf{B}^{ - 1} $$

when B is a skinny full rank matrix, then the pseudo inverse is defined by left inverse or

$$\mathbf{B}^{\dag} = \bigl( \mathbf{B}^{T}\mathbf{B} \bigr)^{ - 1}\mathbf{B}^{T} $$

when B is a fat and full rank matrix, then the pseudo inverse is defined by right inverse or

$$\mathbf{B}^{\dag} = \mathbf{B}^{T} \bigl( \mathbf{BB}^{T} \bigr)^{ - 1} $$

Appendix B

Reduced matrices are defined by eliminating columns of the matrices. For example, by eliminating the kth column of A, the kth reduced matrix is obtained as

$${}^{k}\mathbf{A} = \left [ \begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c} \mathbf{a}_{1} & \cdots & \mathbf{a}_{k - 1} & \mathbf{a}_{k + 1} & \cdots & \mathbf{a}_{n} \\\end{array} \right ] $$

Reduced vectors are defined similar to reduced vertices eliminating the rows. The kth reduced vector of τ is

For single locked joint failures, there are n reduced matrices of A which are shown by 1 A,2 A,…,n A.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdi, H., Nahavandi, S., Najdovski, Z. et al. Fault-Tolerant Force in Human and Robot Cooperation. Int J of Soc Robotics 5, 103–116 (2013). https://doi.org/10.1007/s12369-012-0151-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12369-012-0151-1

Keywords

Navigation