Skip to main content

Advertisement

Log in

Recognizing Hand Grasp and Manipulation Through Empirical Copula

  • Published:
International Journal of Social Robotics Aims and scope Submit manuscript

Abstract

In human-robot interaction, human hand gesture is an important way to deliver message or teach by demonstration, and it also indicates the content of the safety. Good performance in human motion recognition can not only provide robots with correct decisions but also avoid the potential safety hazards. In this paper, Empirical Copula is introduced for recognizing human motions for the first time using the proposed motion template and matching algorithm. The huge computational cost of Empirical Copula is alleviated by the proposed re-sampling processing. The experiments with human hand motions including grasps and in-hand manipulations demonstrate Empirical Copula outperforms the Time Clustering (TC), Gaussian Mixture Models (GMMs) and Hidden Markov Models (HMMs) in terms of recognition rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kawasaki H, Komatsu T, Uchiyama K (2002) Dexterous anthropomorphic robot hand with distributed tactile sensor: Gifu hand II. IEEE/ASME Trans Mechatron 7(3):296–303

    Article  Google Scholar 

  2. He P, Jin MH, Yang L, Wei R, Liu YW, Cai HG, Liu H, Seitz N, Butterfass J, Hirzinger G (2004) High performance DSP/FPGA controller for implementation of HIT/DLR dexterous robot hand. In: Proceedings of the IEEE international conference on robotics and automation, pp 3397–3402

  3. Hoshino K, Kawabuchi I (2005) Stable pinching with fingertips in humanoid robot hand. In: 2005 IEEE/RSJ international conference on intelligent robots and systems, 2005 (IROS 2005), pp 4149–4154

  4. Carbone G, Ceccarelli M (2008) Design of LARM hand: problems and solutions. In: Proceedings of the 2008 IEEE international conference on automation, quality and testing, robotics, vol 02. IEEE Computer Society, Los Alamitos, pp 298–303

    Chapter  Google Scholar 

  5. Shadow Robot Company (2009) http://www.shadowrobot.com/

  6. Matsuoka Y, Afshar P, Oh M (2006) On the design of robotic hands for brain-machine interface. Neurosurg Focus 20(5):1–9

    Google Scholar 

  7. Jones LA, Lederman SJ (2006) Human hand function. Oxford University Press, London

    Book  Google Scholar 

  8. Kulić D, Croft EA (2006) Real-time safety for human–robot interaction. Robot Auton Syst 54(1):1–12

    Article  Google Scholar 

  9. Haddadin S, Albu-Schaffer A, Hirzinger G (2007) Safety evaluation of physical human-robot interaction via crash-testing. In: Robotics: science and systems conference (RSS2007), pp 217–224

  10. Waarsing BJW, Nuttin M, Van Brussel H, Corteville B (2005) From biological inspiration toward next-generation manipulators: manipulator control focused on human tasks. IEEE Trans Syst Man Cybern Part C: Appl Rev 35(1):53–65

    Article  Google Scholar 

  11. Yang HD, Park AY, Lee SW (2007) Gesture spotting and recognition for human–robot interaction. IEEE Trans Robot 23(2):256–270

    Article  Google Scholar 

  12. Zaeh M, Roesel W (2009) Safety aspects in a human-robot interaction scenario: a human worker is co-operating with an industrial robot. In: Progress in robotics: FIRA RoboWorld congress 2009, Incheon, Korea, August 16–20. Proceedings, pp 53–62

  13. Kulić D, Croft E (2007) Pre-collision safety strategies for human-robot interaction. Auton Robots 22(2):149–164

    Article  Google Scholar 

  14. Yu H, Sun G, Song W, Li X (2005) Human motion recognition based on neural network. In: Communications, circuits and systems, 2005. Proceedings. 2005 international conference on, p 2

  15. Chen YT, Tseng KT (2007) Multiple-angle hand gesture recognition by fusing SVM classifiers. In: Proc IEEE international conference on automation science and engineering, 22–25 Sept 2007, pp 527–530

  16. Bedregal BC, Dimuro GP, Costa ACR (2007) Hand gesture recognition in an interval fuzzy approach. TEMA Tend Mat Apl Comput 8(1):21–31

    Google Scholar 

  17. Bedregal BC, Costa ACR, Dimuro GP (2006) Fuzzy rule-based hand gesture recognition. Artif Intell Theory Pract 217:285–294

    Article  Google Scholar 

  18. Calinon S, Billard A (2007) Incremental learning of gestures by imitation in a humanoid robot. In: Proceedings of the ACM/IEEE international conference on human-robot interaction, pp 255–262

  19. Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 77(2):257–286

    Article  Google Scholar 

  20. Bernardin K, Ogawara K, Ikeuchi K, Dillmann R (2005) A sensor fusion approach for recognizing continuous human grasping sequences using hidden Markov models. IEEE Trans Robotics 21(1):47–57

    Article  Google Scholar 

  21. Ju Z, Liu H, Zhu X, Xiong Y (2009) Dynamic grasp recognition using time clustering, Gaussian mixture models and hidden Markov models. J Adv Robotics 23:1359–1371

    Article  Google Scholar 

  22. Dasgupta A, Raftery AE (1998) Detecting features in spatial point processes with clutter via model-based clustering. J Am Stat Assoc 93:294–302

    Article  MATH  Google Scholar 

  23. Fraley C, Raftery AE (1998) How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput J 41(8):578–588

    Article  MATH  Google Scholar 

  24. Deheuvels P (1979) La fonction de dépendance empirique et ses propriétés: Un test non paramétrique d’indépendance. Bull Acad R Belg Cl Sci 65:274–292

    MATH  MathSciNet  Google Scholar 

  25. Deheuvels P (1981) A non parametric test for independence. Publ Inst Stat Univ Paris 26(2):29–50

    MATH  MathSciNet  Google Scholar 

  26. Dempster MAH, Medova EA, Yang SW (2007) Empirical copulas for CDO tranche pricing using relative entropy. Int J Theor Appl Finance 10(4):679–701

    Article  Google Scholar 

  27. Ma J, Sun Z (2008) Dependence structure estimation via copula. Arxiv preprint, arXiv:0804.4451

  28. Kojadinovic I, (2010) Hierarchical clustering of continuous variables based on the empirical copula process and permutation linkages. Comput. Stat. Data Anal. 54(1):90–108

    Article  Google Scholar 

  29. Cherubini U, Luciano E, Vecchiato W (2004) Copula methods in finance. Wiley, New York

    MATH  Google Scholar 

  30. Nelsen RB (2006) An introduction to copulas. Springer, Berlin

    MATH  Google Scholar 

  31. Sklar A (1959) Fonctions de répartition a n dimensions et leurs marges. Publ Inst Stat Univ Paris 8:229–231

    MathSciNet  Google Scholar 

  32. Kolev N, Anjos U, Mendes BVM (2006) Copulas: a review and recent developments. Stoch Models 22(4):617–660

    Article  MATH  MathSciNet  Google Scholar 

  33. Kruskal WH (1958) Ordinal measures of association. J Am Stat Assoc 53(284):814–861

    Article  MATH  MathSciNet  Google Scholar 

  34. Lehmann EL (1966) Some concepts of dependence. Ann Math Stat 37(5):1137–1153

    Article  MATH  MathSciNet  Google Scholar 

  35. Iberall T (1997) Human prehension and dexterous robot hands. Int J Robot Res 16(3):285–299

    Article  Google Scholar 

  36. Liu H, Brown DJ, Coghill GM (2008) Fuzzy qualitative robot kinematics. IEEE Trans Fuzzy Syst 16(3):802–822

    Article  Google Scholar 

  37. Liu H, Coghill GM, Brown DJ (2007) Qualitative kinematics of planar robots: intelligent connection. Int J Approx Reason 46(3):525–541

    Article  MATH  Google Scholar 

  38. Liu H (2008) A fuzzy qualitative framework for connecting robot qualitative and quantitative representations. IEEE Trans Fuzzy Syst 16(6):1522–1530

    Article  Google Scholar 

  39. Chan CS, Liu H (2009) Fuzzy qualitative human motion analysis. IEEE Trans Fuzzy Syst 17(4):851–862

    Article  MathSciNet  Google Scholar 

  40. Liu H, Coghill GM, Barnes DP (2009) Fuzzy qualitative trigonometry. Int J Approx Reason 51(1):71–88

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honghai Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ju, Z., Liu, H. Recognizing Hand Grasp and Manipulation Through Empirical Copula. Int J of Soc Robotics 2, 321–328 (2010). https://doi.org/10.1007/s12369-010-0055-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12369-010-0055-x

Keywords

Navigation