Skip to main content
Log in

Tracking and Modeling of Human Activity Using Laser Rangefinders

  • Published:
International Journal of Social Robotics Aims and scope Submit manuscript

Abstract

We describe a system that uses laser rangefinders to track the positions of people in typical environments and then builds predictive models of the observed movement patterns and interactions between persons. We represent all human activity as detected by the laser rangefinder system as a probability distribution over the space of possible displacements. The assumption is that different activities will map to distinct probability distributions. Position tracks are first segmented and clustered into short sequences representing different activities. The sequence of activity clusters is then used to build a stochastic model of the observed movement patterns and the typical frequency of occurrence. Interactions are assumed to occur between persons whose corresponding probability distributions exhibit a high degree of similarity. We describe the performance of the system on data recorded from unscripted activities that occurred in different environments: open layout laboratory, corridor, and an outdoor courtyard. In the laboratory environment, the system was able to detect interactions between people (ping-pong players) without utilizing a pre-defined model of specific interactions. In the courtyard environment, the system was able to flag a sudden increase in the number of people in the courtyard as an anomalous occurrence without any pre-defined concept of occupancy of the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arbuckle D, Howard A, Matarić MJ (2002) Temporal Occupancy Grids: a method for classifying spatio-temporal properties of the environment. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), EPFL, Switzerland, pp 409–414

  2. Bandyopadhyay T, Rong N, Ang M, Hsu D, Lee WS (2009) Motion planning for people tracking in uncertain and dynamic environments. In: Arras KO, Mozos OM (eds) Workshop on people detection and tracking, 2009 IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan

  3. Bennewitz M, Burgard W, Thrun S (2002) Learning motion patterns of persons for mobile service robots. In: Proceedings of the 2002 IEEE international conference on robotics and automation (ICRA), May 11–15, 2002, Washington, DC, USA, pp 3601–3606

  4. Bernaola-Galvan P, Roman-Roldan R, Oliver J (1996) Compositional segmentation and long-range fractal correlations in DNA sequences. Phys Rev E 53(5):5181–5189

    Article  Google Scholar 

  5. Bobick AF, Ivanov YA (1998) Action recognition using probabilistic parsing. In: 1998 conference on computer vision and pattern recognition (CVPR). IEEE Comput Soc, Santa Barbara, CA, USA, pp 196–202

    Google Scholar 

  6. Brdiczka O, Crowley J, Reignier P (2009) Learning situation models in a smart home. IEEE Trans Syst Man Cybern, Part B, Cybern 39(1):56–63

    Article  Google Scholar 

  7. Bruce A, Gordon G (2004) Better motion prediction for people-tracking. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), New Orleans, USA, vol 2

  8. Cielniak G, Bennewitz M, Burgard W (2003) Where is …? Learning and utilizing motion patterns of persons with mobile robots. In: Eighteenth international joint conference on artificial intelligence (IJCAI-03), Acapulco, Mexico, pp 909–914

  9. Crowley JL, Reignier P, Barranquand R (2009) Situation models: A tool for observing and understanding activity. In: Arras KO, Mozos OM (eds) Workshop on people detection and tracking, 2009 IEEE international conference on robotics and automation (ICRA), Kobe, Japan

  10. Emaduddin M, Shell DA (2009) Estimation of pedestrian distribution in indoor environments using multiple pedestrian tracking. In: Arras KO, Mozos OM (eds) Workshop on people detection and tracking, 2009 IEEE international conference on robotics and automation (ICRA), Kobe, Japan

  11. Fod A, Howard A, Matarić MJ (2002) A laser-based people tracker. In: Proceedings of the 2002 IEEE international conference on robotics and automation (ICRA), Washington, DC, USA, pp 3024–3029

  12. Frintrop S, Königs A, Hoeller F, Schulz D (2009) Visual person tracking using a cognitive observation model. In: Arras KO, Mozos OM (eds) Workshop on people detection and tracking, 2009 IEEE international conference on robotics and automation (ICRA), Kobe, Japan

  13. Glas DF, Miyashita T, Ishiguro H (2009) Laser-based tracking of human position and orientation using parametric shape modeling. Adv Robot 23(4):405–428

    Article  Google Scholar 

  14. Goldberg D, Matarić M (1999) Augmented Markov models. Tech. Rep. IRIS-99-367, University of Southern California Institute for Robotics and Intelligent Systems

  15. Hongeng S, Nevatia R (2001) Multi-agent event recognition. In: IEEE international conference on computer vision (ICCV), Vancouver, Canada, vol 2, pp 84–91

  16. Hongeng S, Bremond F, Nevatia R (2000) Representation and optimal recognition of human activities. In: 2000 conference on computer vision and pattern recognition (CVPR). IEEE Comput Soc, Hilton Head, pp 1818–1825

    Google Scholar 

  17. Howard A, Matarić MJ, Sukhatme GS (2001) Relaxation on a mesh: a formalism for generalized localization. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), October 2001, Wailea, Hawaii, pp 1055–1060

  18. Ivanov Y, Stauffer C, Bobick A, Grimson W (1999) Video surveillance of interactions. In: 1999 computer vision and pattern recognition (CVPR) workshop on visual surveillance, Fort Collins, Colorado, USA

  19. Khan Z, Balch T, Dellaert F (2005) MCMC-based particle filtering for tracking a variable number of interacting targets. IEEE Trans Pattern Anal Mach Intell 27(11):1805–1819

    Article  Google Scholar 

  20. Kohlmorgen J, Lemm S (2002) A dynamic HMM for on-line segmentation of sequential data. In: Advances in neural information processing systems 14 (NIPS), pp 793–800

  21. Kulić D, Takano W, Nakamura Y (2009) On-line segmentation and clustering from continuous observation of whole body motions. IEEE Trans Robot 25(5):1158–1166

    Article  Google Scholar 

  22. Lau B, Arras KO, Burgard W, (2009) Multi-model hypothesis group tracking and, group size estimation. In: Arras KO, Mozos OM (eds) Workshop on people detection and tracking, 2009 IEEE international conference on robotics and automation (ICRA), Kobe, Japan

  23. Liao L, Fox D, Kautz H (2007a) Extracting places and activities from GPS traces using hierarchical conditional random fields. Int J Robot Res 26(1):119–134

    Article  Google Scholar 

  24. Liao L, Patterson D, Fox D, Kautz H (2007b) Learning and inferring transportation routines. Artif Intell 171(5–6):311–331

    Article  MATH  MathSciNet  Google Scholar 

  25. Lin J (1991) Divergence measures based on the Shannon entropy. IEEE Trans Inf Theory 37(1):145–151

    Article  MATH  Google Scholar 

  26. Luber M, Arras KO, Plagemann C, Burgard W (2009a) Classifying dynamic objects. Auton Robots 26(2–3):141–151

    Article  Google Scholar 

  27. Luber M, Tipaldi GD, Arras KO (2009b) Spatially grounded multi-hypothesis tracking of people. In: Arras KO, Mozos OM (eds) Workshop on people detection and tracking, 2009 IEEE international conference on robotics and automation (ICRA), Kobe, Japan

  28. Medioni G, Cohen I, Bremond F, Hongeng S, Nevatia R (2001) Event detection and analysis from video streams. IEEE Trans Pattern Anal Mach Intell 23(8):873–889

    Article  Google Scholar 

  29. Mozos OM, Kurazume R, Hasegawa T (2009) Multi-layer people detection using 2d range data. In: Arras KO, Mozos OM (eds) Workshop on people detection and tracking, 2009 IEEE international conference on robotics and automation (ICRA), Kobe, Japan

  30. Nguyen NT, Phung DQ, Venkatesh S, Bui H (2005) Learning and detecting activities from movement trajectories using the hierarchical hidden Markov models. In: Proceedings of the 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR), IEEE Comput Soc, pp 955–960

  31. Oliver N, Rosario B, Pentland A (1998) Statistical modeling of human interactions. In: IEEE computer society conference on computer vision and pattern recognition, workshop on the interpretation of visual motion (CVPR-98), Santa Barbara, USA

  32. Oliver N, Horvitz E, Garg A (2002) Layered representations for recognizing office activity. In: Proceedings of the fourth IEEE international conference on multimodal interfaces (ICMI 2002), Pittsburgh, USA, pp 3–8

  33. Panangadan A, Sukhatme GS (2005) Data segmentation for region detection in a sensor network. Tech. Rep. CRES 05-005, University of Southern California

  34. Panangadan A, Matarić MJ, Sukhatme G (2004a) Detecting anomalous human interactions using laser range-finders. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE Press, New York, pp 2136–2141

    Google Scholar 

  35. Panangadan A, Matarić MJ, Sukhatme G (2004b) Learning models of human interaction in indoor environments. In: Proceedings of the third international joint conference on autonomous agents and multi-agent systems (AAMAS), IEEE Comput Soc, pp 1308–1309

  36. Patterson D, Liao L, Fox D, Kautz H (2003) Inferring high-level behavior from low-level sensors. In: Proceedings of the fifth international conference on ubiquitous computing (UBICOMP-03), Seattle, USA, pp 73–89

  37. Schiele B, Andriluka M, Majer N, Roth S, Wojek C (2009) Visual people detection: Different models, comparison and discussion. In: Arras KO, Mozos OM (eds) Workshop on people detection and tracking, 2009 IEEE international conference on robotics and automation (ICRA), Kobe, Japan

  38. Schulz D, Burgard W, Fox D, Cremers AB (2003) People tracking with mobile robots using sample-based joint probabilistic data association filters. Int J Robot Res 22(2):99–116

    Article  Google Scholar 

  39. Song X, Cui J, Wang X, Zhao H, Zha H (2008) Tracking interacting targets with laser scanner via on-line supervised learning. In: IEEE international conference on robotics and automation (ICRA), Pasadena, California, pp 2271–2276

  40. Spinello L, Triebel R, Siegwart R (2009) A trained system for multimodal perception in urban environments. In: Arras KO, Mozos OM (eds) Workshop on people detection and tracking, 2009 IEEE international conference on robotics and automation (ICRA), Kobe, Japan

  41. Wolf DF, Sukhatme GS (2007) Semantic mapping using mobile robots. IEEE Trans Robot 24(2):245–258

    Article  Google Scholar 

  42. Yan H, Matarić MJ (2002) General spatial features for analysis of multi-robot and human activities from raw position data. In: Proceedings of the 2002 IEEE/RSJ international conference on intelligent robots and systems (IROS-2002), September 30–October 4, 2002, EPFL, Switzerland, pp 770–2775

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Panangadan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panangadan, A., Matarić, M. & Sukhatme, G.S. Tracking and Modeling of Human Activity Using Laser Rangefinders. Int J of Soc Robotics 2, 95–107 (2010). https://doi.org/10.1007/s12369-009-0043-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12369-009-0043-1

Navigation