Advertisement

International Journal of Social Robotics

, Volume 2, Issue 1, pp 79–94 | Cite as

Probabilistic Autonomous Robot Navigation in Dynamic Environments with Human Motion Prediction

  • Amalia F. Foka
  • Panos E. Trahanias
Article

Abstract

This paper considers the problem of autonomous robot navigation in dynamic and congested environments. The predictive navigation paradigm is proposed where probabilistic planning is integrated with obstacle avoidance along with future motion prediction of humans and/or other obstacles. Predictive navigation is performed in a global manner with the use of a hierarchical Partially Observable Markov Decision Process (POMDP) that can be solved on-line at each time step and provides the actual actions the robot performs. Obstacle avoidance is performed within the predictive navigation model with a novel approach by deciding paths to the goal position that are not obstructed by other moving objects movement with the use of future motion prediction and by enabling the robot to increase or decrease its speed of movement or by performing detours. The robot is able to decide which obstacle avoidance behavior is optimal in each case within the unified navigation model employed.

Navigation Obstacle avoidance Motion prediction Path planning POMDPs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bennewitz M, Burgard W, Cielniak G, Thrun S (2005) Learning motion patterns of people for compliant robot motion. Int J Robot Res 24(1) Google Scholar
  2. 2.
    Borenstein J, Koren Y (1991) The Vector Field Histogram—fast obstacle avoidance for mobile robots. IEEE Trans Robot Autom 7(3):278–288 CrossRefGoogle Scholar
  3. 3.
    Brock O, Khatib O (1999) High-speed navigation using the global dynamic window approach. In: Proceedings of the IEEE international conference on robotics & automation (ICRA) Google Scholar
  4. 4.
    Bruce A, Gordon G (2004) Better motion prediction for people-tracking. In: Proceedings of the IEEE international conference on robotics & automation (ICRA) Google Scholar
  5. 5.
    Chang CC, Song KT (1996) Dynamic motion planning based on real-time obstacle prediction. In: Proceedings of the IEEE international conference on robotics & automation (ICRA), vol 3, pp 2402–2407 Google Scholar
  6. 6.
    Elganar A, Gupta K (1998) Motion prediction of moving objects based on autoregressive model. IEEE Trans Syst Man Cybern Part A 28(6):803–810 CrossRefGoogle Scholar
  7. 7.
    Foka A, Trahanias P (2002) Predictive autonomous robot navigation. In: Proceedings of the IEEE/RSJ international conference on intelligent robots & systems (IROS) Google Scholar
  8. 8.
    Foka A, Trahanias P (2003) Predictive control of robot velocity to avoid obstacles in dynamic environments. In: Proceedings of the IEEE/RSJ international conference on intelligent robots & systems (IROS) Google Scholar
  9. 9.
    Foka AF, Trahanias PE (2007) Real-time hierarchical POMDPS for autonomous robot navigation. Robot Auton Syst 55(7):561–571 CrossRefGoogle Scholar
  10. 10.
    Fox D, Burgard W, Thrun S (1997) The dynamic window approach to collision avoidance. IEEE Robot Autom Mag 4(1):23–33 CrossRefGoogle Scholar
  11. 11.
    Hauskrecht M (2000) Value function approximations for Partially Observable Markov Decision Processes. J Artif Intell Res 13:33–95 zbMATHMathSciNetGoogle Scholar
  12. 12.
    Kehtarnavaz N, Li S (1988) A collision-free navigation scheme in the presence of moving obstacles. In: CVPR’88 (IEEE computer society conference on computer vision and pattern recognition, Ann Arbor, MI, 5–9 June 1988). Computer Society Press, Washington, pp 808–813 CrossRefGoogle Scholar
  13. 13.
    Khatib O (1986) Real-time obstacle avoidance for robot manipulator and mobile robots. Int J Robot Res 5(1):90–98 CrossRefMathSciNetGoogle Scholar
  14. 14.
    Littman ML, Goldsmith J, Mundhenk M (1998) The computational complexity of probabilistic planning. J Artif Intell Res 9:1–36 zbMATHMathSciNetGoogle Scholar
  15. 15.
    Lu F, Milios E (1998) Robot pose estimation in unknown environments by matching 2d range scans. J Intell Robot Syst 18:249–275 CrossRefGoogle Scholar
  16. 16.
    Müller J, Stachniss C, Arras K, Burgard W (2009) Socially inspired motion planning for mobile robots in populated environments. In: International Conference on Cognitive Systems (CogSys), Karlsruhe, Germany, 2008 Google Scholar
  17. 17.
    Nam YS, Lee BH, Kim MS (1996) View-time based moving obstacle avoidance using stochastic prediction of obstacle motion. In: Proceedings of the 1996 IEEE international conference on robotics and automation, pp 1081–1086 Google Scholar
  18. 18.
    Ogren P, Leonard N (2005) A convergent dynamic window approach to obstacle avoidance. IEEE Trans Robot 21(2):188–195 CrossRefGoogle Scholar
  19. 19.
    Oliver S, Saptharishi M, Dolan J, Trebi-Ollennu A, Khosla P (2000) Multi-robot path planning by predicting structure in a dynamic environment. In: Proceedings of the first IFAC conference on mechatronic systems, vol II, pp 593–598 Google Scholar
  20. 20.
    Ortega JG, Camacho EF (1996) Mobile robot navigation in a partially structured static environment, using neural predictive control. Control Eng Pract 4(12):1669–1679 CrossRefGoogle Scholar
  21. 21.
    Petti S, Fraichard T (2005) Safe motion planning in dynamic environments. In: Proceedings of the IEEE/RSJ international conference on intelligent robots & systems (IROS), pp 2210– 2215 Google Scholar
  22. 22.
    Rohrmuller F, Althoff M, Wollherr D, Buss M (2008) Probabilistic mapping of dynamic obstacles using Markov chains for replanning in dynamic environments. In: IROS, pp 2504–2510 Google Scholar
  23. 23.
    Stachniss C, Burgard W (2002) An integrated approach to goal-directed obstacle avoidance under dynamic constraints for dynamic environments. In: Proceedings of the IEEE/RSJ international conference on intelligent robots & systems (IROS) Google Scholar
  24. 24.
    Tadokoro S, Ishikawa Y, Takebe T, Takamori T (1993) Stochastic prediction of human motion and control of robots in the service of human. In: Proceedings of the 1993 IEEE international conference on systems, man and cybernetics, vol 1, pp 503–508 Google Scholar
  25. 25.
    Tadokoro S, Hayashi M, Manabe Y (1995) On motion planning of mobile robots which coexist and cooperate with human. In: Proceedings of the 1995 IEEE/RSJ international conference on intelligent robots and systems, pp 518–523 Google Scholar
  26. 26.
    Vasquez D, Fraichard T (2004) Motion prediction for moving objects: a statistical approach. In: Proceedings of the IEEE international conference on robotics & automation (ICRA) Google Scholar
  27. 27.
    Yung NHC, Ye C (1998) Avoidance of moving obstacles through behavior fusion and motion prediction. In: IEEE international conference on systems, man and cybernetics, pp 3424–3429 Google Scholar
  28. 28.
    Zhu Q (1991) Hidden Markov Model for dynamic obstacle avoidance of mobile robot navigation. IEEE Trans Robot Autom 7(3):390–397 CrossRefGoogle Scholar

Copyright information

© Springer Science & Business Media BV 2010

Authors and Affiliations

  1. 1.Department of Computer Engineering & InformaticsUniversity of PatrasPatrasGreece
  2. 2.Institute of Computer ScienceFoundation for Research and Technology—Hellas (FORTH)HeraklionGreece

Personalised recommendations