Skip to main content
Log in

Towards Humanlike Social Touch for Sociable Robotics and Prosthetics: Comparisons on the Compliance, Conformance and Hysteresis of Synthetic and Human Fingertip Skins

  • Original Paper
  • Published:
International Journal of Social Robotics Aims and scope Submit manuscript

Abstract

The artificial hands for sociable robotics and prosthetics are expected to be touched by other people. Because the skin is the main interface during the contact, a need arises to duplicate humanlike characteristics for artificial skins for safety and social acceptance. Towards the goal of replicating humanlike social touch, this paper compares the skin compliance, conformance and hysteresis of typical robotic and prosthetic skin materials, such as silicone and polyurethane, with the published biomechanical behavior of the human fingertip. The objective was achieved through materials characterization, finite element (FE) modeling and validation experiments. Our initial attempt showed that the selected types of silicone and polyurethane materials did not exhibit the same qualities as the human fingertip skin. However, the methodologies described herein can be used to evaluate other materials, their possible combinations or other fingertip design configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fong T, Nourbakhsh I, Dautenhahn K (2003) A survey of socially interactive robots. Robot Auton Syst 42:143–166

    Article  MATH  Google Scholar 

  2. Ge SS (2007) Social robotics: integrating advances in engineering and computer science (keynote speech). In: Proceedings of the electrical engineering/electronics, computer, telecommunications and information technology (ECTI), Mae Fah Luang University, Chang Rai, Thailand, 9–12 May 2007

  3. Zecca M, Roccella S, Cappiello G, Ito K, Imanishi K, Miwa H, Carrozza MC, Dario P, Takanishi A (2006) From the human hand to a humanoid hand: biologically-inspired approach for the development of robocasa hand. In: Proceedings of the symposium on robot design, dynamics, and control (ROMANSY), pp 287–294

  4. Pillet J, Didierjean-Pillet A (2001) Aesthetic hand prosthesis: gadget or therapy? Presentation of a new classification. J Hand Surg 28:523–528

    Google Scholar 

  5. Desmond D, MacLachlan M (2002) Psychosocial issues in the field of prosthetics and orthotics. Prosthet Orthot 14:19–22

    Article  Google Scholar 

  6. Murray CD (2005) The social meanings of prosthesis use. J Health Psychol 10:425–441

    Article  Google Scholar 

  7. Aesthetic Concerns Prosthetics Inc. www.livingskin.com. Accessed 17 Sept 2008

  8. Leow MEL, Pho RWH, Pereira BP (2001) Aesthetic prostheses in minor and major upper limb amputations. Hand Clin 17:489–497

    Google Scholar 

  9. Otto Bock Health Care. www.ottobock.com. Accessed 17 Sept 2008

  10. Shimoga KB, Goldenberg AA (1996) Soft robotic fingertips. Part 1. A comparison of construction materials. Int J Robot Res 15:320–334

    Article  Google Scholar 

  11. Russell R (1987) Compliant-skin tactile sensor. In: Proceedings of the IEEE international conference on robotics and automation, vol 4, pp 1645–1648

  12. Howe RD, Cutkosky MR (1993) Dynamic tactile sensing: perception of fine surface features with stress rate sensing. IEEE Trans Robot Autom 9:140–151

    Article  Google Scholar 

  13. Tremblay MR, Cutkosky MR (1993) Estimating friction using incipient slip sensing during a manipulation task. In: Proceedings of the IEEE international conference on robotics and automation, vol 1, pp 429–434

  14. Son JS, Monteverde EA, Howe RD (1994) A tactile sensor for localizing transient events in manipulation. In: Proceedings of the IEEE international conference on robotics and automation, vol 1, pp 471–476

  15. Tiezzi P, Lotti F, Vassura G (2003) Polyurethane gel pulps for robotic fingers. In: International conference on advanced robotics, Coimbra, Portugal, 30 June–3 July 2003

  16. Dario P, De Rossi D, Domenici C, Francesconi R (1984) Ferroelectric polymer tactile sensors with anthropomorphic features. In: Proceedings of the IEEE international conference on robotics and automation, vol 1, pp 332–340

  17. Dario P, Bicchi A, Vivaldi F, Pinotti P (1985) Tendon actuated exploratory finger with polymeric, skin-like tactile sensor. In: Proceedings of the IEEE international conference on robotics and automation, vol 2, pp 701–706

  18. Cutkosky M, Jourdain J, Wright P (1987) Skin materials for robotic fingers. In: Proceedings of IEEE international conference on robotics and automation, vol 4, pp 1649–1654

  19. Chang DC, Cutkosky MR (1995) Rolling with deformable fingertips. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, vol 2, pp 194–199

  20. Dollar AM, Howe RD (2006) A robust compliant grasper via shape deposition manufacturing. IEEE/ASME Trans Mechatron 11:154–161

    Article  Google Scholar 

  21. Shimojo M (1997) Mechanical filtering effect of elastic cover for tactile sensor. IEEE Trans Robot Autom 13:128–132

    Article  Google Scholar 

  22. Ishiguro H (2007) Scientific issues concerning androids. Int J Robot Res 26:105–117

    Article  Google Scholar 

  23. Carrozza MC, Cappiello G, Micera S, Edin BB, Beccai L, Cipriani C (2006) Design of a cybernetic hand for perception and action. Biol Cybern 95:629–644

    Article  MATH  Google Scholar 

  24. Edin BB, Ascari L, Beccai L, Roccella S, Cabibihan JJ, Carrozza MC (2008) Bio-inspired sensorization of a biomechatronic robot hand for the grasp-and-lift task. Brain Res Bull 75:785–795

    Article  Google Scholar 

  25. Beccai L, Roccella S, Ascari L, Valdastri P, Sieber A, Carrozza MC, Dario P (2008) Development and experimental analysis of a soft compliant tactile microsensor for anthropomorphic artificial hand. IEEE/ASME Trans Mechatron 13:158–168

    Article  Google Scholar 

  26. Serina E, Mote S, Rempel D (1997) Force response of the fingertip pulp to repeated compression—effects of loading rate, loading angle and anthropometry. J Biomech 30:1035–1040

    Article  Google Scholar 

  27. Vega-Bermudez F, Johnson KO (2004) Fingertip skin conformance accounts, in part, for differences in tactile spatial acuity in young subjects, but not for the decline in spatial acuity with aging. Percept Psychophys 66:60–67

    Google Scholar 

  28. Johnson KO, Phillips JR (1981) Tactile spatial resolution. Part 1. Two-point discrimination, gap detection, grating resolution, and letter recognition. J Neurophysiol 46:1177–92

    Google Scholar 

  29. Perez CA, Holzmann CA, Jaeschke HE (2000) Two-point vibrotactile discrimination related to parameters of pulse burst stimulus. Med Biol Eng Comput 38:74–9

    Article  Google Scholar 

  30. Srinivasan MA (1989) Surface deflection of primate fingertip under line load. J Biomech 22:343–9

    Article  Google Scholar 

  31. Westling G, Johansson RS (1987) Responses in glabrous skin mechanoreceptors during precision grip in humans. Exp Brain Res 66:128–140

    Article  Google Scholar 

  32. Pawluk DTV, Howe RD (1999) Dynamic contact of the human fingerpad against a flat surface. J Biomech Eng 121(6):605–611

    Article  Google Scholar 

  33. Wu JZ, Dong RG, Smutz WP, Rakheja S (2003) Dynamic interaction between a fingerpad and a flat surface: experiments and analysis. Med Eng Phys 25:397–406

    Article  Google Scholar 

  34. Nakazawa N, Ikeura R, Inooka H (2000) Characteristics of human fingertips in the shearing direction. Biol Cybern 82:207–214

    Article  Google Scholar 

  35. Pataky TC, Latash ML, Zatsiorsky VM (2005) Viscoelastic response of the finger pad to incremental tangential displacements. J Biomech 38:1441–9

    Article  Google Scholar 

  36. Liu H, Meusel P, Hirzinger G (1995) A tactile sensing system for the DLR three finger robot hand. In: Proceedings of the international symposium on measurement and control in robotics, vol 1, pp 91–96

  37. Yamada D, Maeno T, Yamada Y (2002) Artificial finger skin having ridges and distributed tactile sensors used for grasp force control. J Robot Mechatron 14:140–146

    Google Scholar 

  38. Dario P, Laschi C, Micera S, Vecchi F, Zecca M, Menciassi A, Mazzolai B, Carrozza MC (2003) Biologically-inspired microfabricated force and position mechanoreceptors. In: Barth FG, Secomb T, Humphrey C (eds) Sensors and sensing in biology and engineering. Springer, Berlin, pp 109–128

    Google Scholar 

  39. Dargahi J (2004) Human tactile perception as a standard for artificial tactile sensing—a review. Med Robot Comput Assist Surg 1:23–35

    Article  Google Scholar 

  40. Pawluk DT, Howe RD (1999) Dynamic lumped element response of the human fingerpad. J Biomech Eng 121:178–83

    Article  Google Scholar 

  41. Cabibihan JJ, Pattofatto S, Jomaa M, Benallal A, Carrozza MC, Dario P (2006) The conformance test for robotic/prosthetic fingertip skins. In: Proceedings of the first IEEE/RAS-EMBS international conference on biomedical robotics and biomechatronics, vol 1, pp 561–566

  42. Holzapfel G (2000) Nonlinear solid mechanics, a continuum approach for engineering. Wiley, New York

    MATH  Google Scholar 

  43. Fearing R, Hollerbach J (1984) Basic solid mechanics for tactile sensing. In: Proceedings of the IEEE international conference on robotics and automation, vol 1, pp 266–275

  44. Speeter TH (1992) Three-dimensional finite element analysis of elastic continua for tactile sensing. Int J Robot Res 11:1–19

    Article  Google Scholar 

  45. Ricker SL, Ellis RE (1993) 2-d finite-element models of tactile sensors. In: Proceedings of the IEEE international conference on robotics and automation, vol 1, pp 941–947

  46. Maeno T, Kobayashi K, Yamazaki N (1998) Relationship between the structure of human finger tissue and the location of tactile receptors. JSME Int J 41:94–100

    Google Scholar 

  47. Maeno T, Kobayashi K (1998) Finite element analysis of dynamic characteristics of the human finger pad with objects with/without surface roughness. In: Proceedings of the ASME international mechanical engineering congress and exposition, vol 64, pp 279–286

  48. Phillips JR, Johnson KO (1981) Tactile spatial resolution. Part 3. A continuum mechanics model of skin predicting mechanoreceptor responses to bars, edges, and gratings. J Neurophysiol 46:1204–25

    Google Scholar 

  49. Wu JZ, Dong RG, Rakheja S, Schopper AW, Smutz WP (2004) A structural fingertip model for simulating of the biomechanics of tactile sensation. Med Eng Phys 26:165–175

    Article  Google Scholar 

  50. Wu JZ, Dong RG (2005) Analysis of the contact interactions between figertips and objects with different surface curvatures. Proc IMechE, Part H Eng Med 219:89–103

    Article  Google Scholar 

  51. Birznieks I, Jenmalm P, Goodwin A, Johansson RS (2001) Encoding of direction of fingertip forces by human tactile afferents. J Neurosci 21:8222–8237

    Google Scholar 

  52. Gulati RJ, Srinivasan MA (1995) Human fingerpad under indentation: static and dynamic force response. Proc ASME Bioeng Conf 29:261–262

    Google Scholar 

  53. Johansson R, Birznieks I (2004) First spikes in ensembles of human tactile afferents code complex spatial fingertip events. Nat Neurosci 7:170–177

    Article  Google Scholar 

  54. Kao I, Cutkosky MR, Johansson RS (1997) Robotic stiffness control and calibration as applied to human grasping tasks. IEEE Trans Robot Autom 13:557–566

    Article  Google Scholar 

  55. Annaswamy AM, Srinivasan MA (1998) The role of compliant fingerpads in grasping and manipulation: identification and control. In: Baillieul J, Sastry S, Sussmann HJ (eds) The IMA volumes in mathematics and its applications. Springer, New York, pp 1–29

    Google Scholar 

  56. Murakami K, Hasegawa T (2004) New tactile sensing by robotic fingertip with soft skin. In: Proceedings of IEEE conference on sensors, vol 2, pp 824–827

  57. Lee MH, Nicholls HR (1999) Tactile sensing for mechatronics—a state of the art survey. Mechatronics 9:1–33

    Article  Google Scholar 

  58. Howe RD (1994) Tactile sensing and control of robotic manipulation. J Adv Robot 8:245–261

    Article  Google Scholar 

  59. Kolesar ES Jr, Dyson CS (1995) Object imaging with a piezoelectric robotic tactile sensor. Microelectromech Syst J 4:87–96

    Article  Google Scholar 

  60. Harmon LD (1982) Automated tactile sensing. Int J Robot Res 1:3–32

    Article  Google Scholar 

  61. Cabibihan JJ (2007) Skin materials selection for prosthetic and humanoid robotic fingertips. PhD thesis, Advanced Robotics Technologies and Systems Lab, Scuola Superiore Sant’Anna, Pisa

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Chiara Carrozza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabibihan, JJ., Pattofatto, S., Jomâa, M. et al. Towards Humanlike Social Touch for Sociable Robotics and Prosthetics: Comparisons on the Compliance, Conformance and Hysteresis of Synthetic and Human Fingertip Skins. Int J of Soc Robotics 1, 29–40 (2009). https://doi.org/10.1007/s12369-008-0008-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12369-008-0008-9

Keywords

Navigation