Skip to main content

Measurement Instruments for the Anthropomorphism, Animacy, Likeability, Perceived Intelligence, and Perceived Safety of Robots

Abstract

This study emphasizes the need for standardized measurement tools for human robot interaction (HRI). If we are to make progress in this field then we must be able to compare the results from different studies. A literature review has been performed on the measurements of five key concepts in HRI: anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety. The results have been distilled into five consistent questionnaires using semantic differential scales. We report reliability and validity indicators based on several empirical studies that used these questionnaires. It is our hope that these questionnaires can be used by robot developers to monitor their progress. Psychologists are invited to further develop the questionnaires by adding new concepts, and to conduct further validations where it appears necessary.

References

  1. Sony (1999) Aibo, vol 1999

  2. Breemen A, Yan X, Meerbeek B (2005) iCat: an animated user-interface robot with personality. In: Fourth international conference on autonomous agents & multi agent systems, Utrecht

  3. Bartneck C, Rauterberg M (2007) HCI reality—an unreal tournament. Int J Hum Comput Stud 65:737–743

    Article  Google Scholar 

  4. Kiesler S, Goetz J (2002) Mental models of robotic assistants. In: CHI’02 extended abstracts on Human factors in computing systems, Minneapolis, Minnesota, USA

  5. Fink A (2003) The survey kit, 2nd edn. Sage, Thousand Oaks

    Google Scholar 

  6. Kooijmans T, Kanda T, Bartneck C, Ishiguro H, Hagita N (2007) Accelerating robot development through integral analysis of human-robot interaction. IEEE Trans Robot 23:1001–1012

    Article  Google Scholar 

  7. Dawis RV (1987) Scale construction. J Counsel Psychol 34:481–489

    Article  Google Scholar 

  8. Lessiter J, Freeman J, Keogh E, Davidoff J (2001) A cross-media presence questionnaire: The itc sense of presence inventory. Presence 10:282–297

    Article  Google Scholar 

  9. Fong T, Nourbakhsh I, Dautenhahn K (2003) A survey of socially interactive robots. Robot Auton Syst 42:143–166

    MATH  Article  Google Scholar 

  10. Bartneck C, Forlizzi J (2004) A design-centred framework for social human-robot interaction. In: Ro-Man2004, Kurashiki, pp 591–594

  11. Dautenhahn K (2007) Socially intelligent robots: dimensions of human–robot interaction. Philos Trans R Soc B Biol Sci 362:679–704

    Article  Google Scholar 

  12. Chalmers AF (1999) What is this thing called science? 3rd edn. Hackett, Indianapolis

    Google Scholar 

  13. Likert R (1932) A technique for the measurement of attitudes. Arch Psychol 140:1–55

    Google Scholar 

  14. Osgood CE, Suci GJ, Tannenbaum PH (1957) The measurements of meaning. University of Illinois Press, Champaign

    Google Scholar 

  15. Friborg O, Martinussen M, Rosenvinge JH (2006) Likert-based vs. semantic differential-based scorings of positive psychological constructs: A psychometric comparison of two versions of a scale measuring resilience. Pers Individ Differ 40:873–884

    Article  Google Scholar 

  16. Powers A, Kiesler S (2006) The advisor robot: tracing people’s mental model from a robot’s physical attributes. In: 1st ACM SIGCHI/SIGART conference on Human-robot interaction, Salt Lake City, Utah, USA

  17. Nunnally JC (1978) Psychometric theory, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  18. Ishiguro H (2005) Android Science—Towards a new cross-interdisciplinary framework. In: CogSci workshop towards social mechanisms of android science, Stresa, pp 1–6

  19. Minato T, Shimada M, Itakura S, Lee K, Ishiguro H (2005) Does gaze reveal the human likeness of an android? In: 4th IEEE international conference on development and learning, Osaka

  20. MacDorman KF (2006) Subjective ratings of robot video clips for human likeness, familiarity, and eeriness: An exploration of the uncanny valley. In: ICCS/CogSci-2006 long symposium: toward social mechanisms of android science, Vancouver

  21. Bartneck C, Kanda T, Ishiguro H, Hagita N (2007) Is the uncanny valley an uncanny cliff? In: 16th IEEE international symposium on robot and human interactive communication, RO-MAN 2007, Jeju, Korea, pp 368–373

  22. Bartneck C, Kanda T, Ishiguro H, Hagita N (2008) My robotic doppelganger—a critical look at the uncanny valley theory. In: Interaction studies—social behaviour and communication in biological and artificial systems

  23. Fogg BJ (2003) Persuasive technology: using computers to change what we think and do. Morgan Kaufmann, San Mateo

    Google Scholar 

  24. Heider F, Simmel M (1944) An experimental study of apparent behavior. Am J Psychol 57:243–249

    Article  Google Scholar 

  25. Scholl B, Tremoulet PD (2000) Perceptual causality and animacy. Trends Cogn Sci 4:299–309

    Article  Google Scholar 

  26. Parisi D, Schlesinger M (2002) Artificial life and Piaget. Cogn Dev 17:1301–1321

    Google Scholar 

  27. Blythe P, Miller GF, Todd PM (1999) How motion reveals intention: Categorizing social interactions. In: Gigerenzer G, Todd P (eds) Simple heuristics that make us smart. Oxford University Press, London, pp 257–285

    Google Scholar 

  28. Turkle S (1998) Cyborg babies and cy-dough-plasm: ideas about life in the culture of simulation. In: Davis-Floyd R, Dumit J (eds) Cyborg babies: from techno-sex to techno-tots. Routledge, New York, pp 317–329

    Google Scholar 

  29. Kahn P, Ishiguro H, Friedman B, Kanda T (2006) What is a human?—Toward psychological benchmarks in the field of human-robot interaction. In: The 15th IEEE international symposium on robot and human interactive communication, ROMAN 2006, Salt Lake City, pp 364–371

  30. Calverley DJ (2005) Toward a method for determining the legal status of a conscious machine. In: AISB 2005 symposium on next generation approaches to machine consciousness: imagination, development, intersubjectivity, and embodiment, Hatfield

  31. Calverley DJ (2006) Android science and animal rights, does an analogy exist? Connect Sci 18:403–417

    Article  Google Scholar 

  32. Zykov V, Mytilinaios E, Adams B, Lipson H (2005) Self-reproducing machines. Nature 435:163–164

    Article  Google Scholar 

  33. Tremoulet PD, Feldman J (2000) Perception of animacy from the motion of a single object. Perception 29:943–951

    Article  Google Scholar 

  34. McAleer P, Mazzarino B, Volpe G, Camurri A, Patterson H, Pollick F (2004) Perceiving animacy and arousal in transformed displays of human interaction. J Vis 4:230–230

    Google Scholar 

  35. Lee KM, Park N, Song H (2005) Can a robot be perceived as a developing creature? Hum Commun Res 31:538–563

    Google Scholar 

  36. Bartneck C, Kanda T, Mubin O, Mahmud AA (2007) The perception of animacy and intelligence based on a robot’s embodiment. In: Humanoids 2007, Pittsburgh

  37. Clark N, Rutter D (1985) Social categorization, visual cues and social judgments. Eur J Soc Psychol 15:105–119

    Article  Google Scholar 

  38. Robbins T, DeNisi A (1994) A closer look at interpersonal affect as a distinct influence on cognitive processing in performance evaluations. J Appl Psychol 79:341–353

    Article  Google Scholar 

  39. Berg JH, Piner K (1990) Social relationships and the lack of social relationship. In: Duck W, Silver RC (eds) Personal relationships and social support. Sage, Thousand Oaks, pp 104–221

    Google Scholar 

  40. Nass C, Reeves B (1996) The media equation. SLI Publications/Cambridge University Press, Cambridge

    Google Scholar 

  41. Monahan JL (1998) I don’t know it but I like you—the influence of non-conscious affect on person perception. Hum Commun Res 24:480–500

    Article  Google Scholar 

  42. Burgoon JK, Hale JL (1987) Validation and measurement of the fundamental themes for relational communication. Commun Monogr 54:19–41

    Article  Google Scholar 

  43. Dreyfus HL, Dreyfus SE (1992) What computers still can’t do: a critique of artificial reason. MIT Press, Cambridge

    Google Scholar 

  44. Dreyfus HL, Dreyfus SE, Athanasiou T (1986) Mind over machine: the power of human intuition and expertise in the era of the computer. Free Press, New York

    Google Scholar 

  45. Weizenbaum J (1976) Computer power and human reason: from judgment to calculation. Freeman, San Francisco

    Google Scholar 

  46. Searle JR (1980) Minds, brains and programs. Behav Brain Sci 3:417–457

    Article  Google Scholar 

  47. Koda T (1996) Agents with faces: a study on the effect of personification of software agents. MIT Media Lab, Cambridge

    Google Scholar 

  48. Warner RM, Sugarman DB (1996) Attributes of personality based on physical appearance, speech, and handwriting. J Pers Soc Psychol 50:792–799

    Article  Google Scholar 

  49. Parise S, Kiesler S, Sproull LD, Waters K (1996) My partner is a real dog: cooperation with social agents. In: 1996 ACM conference on computer supported cooperative work, Boston, Massachusetts, United States, pp 399–408

  50. Kiesler S, Sproull L, Waters K (1996) A prisoner’s dilemma experiment on cooperation with people and human-like computers. J Pers Soc Psychol 70:47–65

    Article  Google Scholar 

  51. Bartneck C, Verbunt M, Mubin O, Mahmud AA (2007) To kill a mockingbird robot. In: 2nd ACM/IEEE international conference on human-robot interaction, Washington DC, pp 81–87

  52. American National Standards Institute (1999) RIA/ANSI R15.06—1999 American national standard for industrial robots and robot systems—safety requirements. American National Standards Institute, New York

    Google Scholar 

  53. Yamada Y, Hirasawa Y, Huang S, Umetani Y, Suita K (1997) Human-robot contact in the safeguarding space. In: IEEE/ASME transactions on mechatronics, vol 2, pp 230–236

  54. Yamada Y, Yamamoto T, Morizono T, Umetani Y (1999) FTA-based issues on securing human safety in a human/robot coexistence system. In: IEEE international conference on systems, man, and cybernetics, 1999. IEEE SMC’99 conference proceedings, vol 2, pp 1058–1063

  55. Bicchi A, Rizzini SL, Tonietti G (2001) Compliant design for intrinsic safety: general issues and preliminary design. In: 2001 IEEE/RSJ international conference on intelligent robots and systems, 2001. Proceedings, vol 4, pp 1864–1869

  56. Bicchi A, Tonietti G (2004) Fast and “soft-arm” tactics [robot arm design]. IEEE Robot Autom Mag 11:22–33

    Article  Google Scholar 

  57. Zinn M, Khatib O, Roth B, Salisbury JK (2002) Towards a human-centered intrinsically safe robotic manipulator. In: IARPIEEE/RAS joint workshop on technical challenges for dependable robots in human environments, Toulouse, France

  58. Zinn M, Khatib O, Roth B (2004) A new actuation approach for human friendly robot design. In: 2004 IEEE international conference on robotics and automation. Proceedings. ICRA’04, vol 1, pp 249–254

  59. Heinzmann J, Zelinsky A (1999) Building human-friendly robot systems. Int Symp Robot Res 305–312

  60. Heinzmann J, Zelinsky A (2003) Quantitative safety guarantees for physical human-robot interaction. Int J Robot Res 22:479–504

    Article  Google Scholar 

  61. Lew JY, Yung-Tsan J, Pasic H (2000) Interactive control of human/robot sharing same workspace. In: 2000 IEEE/RSJ international conference on intelligent robots and systems, 2000 (IROS 2000). Proceedings. pp 535–540

  62. Zurada J, Wright AL, Graham JH (2001) A neuro-fuzzy approach for robot system safety. IEEE Trans Syst Man Cybern Part C Appl Rev 31:49–64

    Article  Google Scholar 

  63. Traver VJ, del Pobil AP, Perez-Francisco M (2000) Making service robots human-safe. In: 2000 IEEE/RSJ international conference on intelligent robots and systems (IROS 2000). Proceedings, vol 1, pp 696–701

  64. Ikuta K, Ishii H, Nokata M (2003) Safety evaluation method of design and control for human-care robots. Int J Robot Res 22:281–297

    Article  Google Scholar 

  65. Haddadin S, Albu-Schaffer A, Hirzinger G (2007) Safe physical human–robot interaction: Measurements, analysis & new insights. In: International symposium on robotics research (ISRR2007), Hiroshima, Japan

  66. Kulic D, Croft E (2005) Anxiety detection during human-robot interaction. In: IEEE international conference on intelligent robots and systems, Edmonton, Canada, pp 389–394

  67. Rani P, Sarkar N, Smith CA, Kirby LD (2004) Anxiety detecting robotic system—towards implicit human-robot collaboration. Robotica 22:85–95

    Article  Google Scholar 

  68. Rani P, Sims J, Brackin R, Sarkar N (2002) Online stress detection using phychophysiological signals for implicit human-robot cooperation. Robotica 20:673–685

    Article  Google Scholar 

  69. Inoue K, Nonaka S, Ujiie Y, Takubo T, Arai T (2005) Comparison of human psychology for real and virtual mobile manipulators. In: IEEE international conference on robot and human interactive communication, pp 73–78

  70. Wada K, Shibata T, Saito T, Tanie K (2004) Effects of robot-assisted activity for elderly people and nurses at a day service center. Proc IEEE 92:1780–1788

    Article  Google Scholar 

  71. Koay KL, Walters ML, Dautenhahn K (2005) Methodological issues using a comfort level device in human-robot interactions. In: IEEE RO-MAN, pp 359–364

  72. Sarkar N (2002) Psychophysiological control architecture for human-robot coordination—concepts and initial experiments. In: IEEE international conference on robotics and automation, Washington, DC, USA, pp 3719–3724

  73. Nonaka S, Inoue K, Arai T, Mae Y (2004) Evaluation of human sense of security for coexisting robots using virtual reality. In: IEEE international conference on robotics and automation, New Orleans, LA, USA, pp 2770–2775

  74. Kulic D, Croft E (2007) Physiological and subjective responses to articulated robot motion. Robotica 25:13–27

    Article  Google Scholar 

  75. Kulic D, Croft E (2006) Estimating robot induced affective state using hidden Markov models. In: RO-MAN 2006—the 15th IEEE international symposium on robot and human interactive communication, Hatfield, pp 257–262

  76. Kulic D, Croft EA (2007) Affective state estimation for human-robot interaction. IEEE Robot Trans 23:991–1000

    Article  Google Scholar 

  77. Kulic D, Croft E (2005) Safe planning for human-robot interaction. J Robot Syst 22:383–396

    Article  Google Scholar 

  78. Khatib O (1986) Real-time obstacle avoidance for manipulators and mobile robots. Int J Robot Res 5:90–98

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Bartneck.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Bartneck, C., Kulić, D., Croft, E. et al. Measurement Instruments for the Anthropomorphism, Animacy, Likeability, Perceived Intelligence, and Perceived Safety of Robots. Int J of Soc Robotics 1, 71–81 (2009). https://doi.org/10.1007/s12369-008-0001-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12369-008-0001-3

Keywords

  • Human factors
  • Robot
  • Perception
  • Measurement