Skip to main content

Frenkel-Kontorova model of propagating ledges on austenite-martensite phase boundaries

Abstract

Modeling the formation and evolution of microstructure in phase transforming materials presents challenges to traditional continuum mechanics approaches. This is mainly because they do not account for effects arising from the discreteness of the underlying lattice. Such effects can be described by non-classical approaches based on discrete particle models. We study the propagation of an austenite-martensite phase boundary using a Frenkel–Kontorova model. The model is based on a one dimensional chain of atoms on the phase boundary under the influence of a temperature dependent substrate potential. Using this model we derive the kinetic relation as a function of temperature.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Reddy JN (2013) An introduction to continuum mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  2. Reddy JN (1985) An introduction to nonlinear finite element analysis: with applications to heat transfer, fluid mechanics, and solid mechanics. Oxford University Press, Oxford

    Google Scholar 

  3. Phillips R (2001) Crystals. Cambridge University Press, Defects and Microstructures Modeling Across Scales

  4. Abeyaratne R, Knowles JK (1990) On the driving traction acting on a surface of strain discontinuity in a continuum. J Mech Phys Solids 38(3):345–360. https://doi.org/10.1016/0022-5096(90)90003-M

    MathSciNet  Article  MATH  Google Scholar 

  5. Abeyaratne R, Knowles JK (1991) Kinetic relations and the propagation of phase boundaries in solids. Arch Ration Mech Anal 114:119–154

    MathSciNet  Article  Google Scholar 

  6. Abeyaratne R, Knowles J (1997) On the kinetics of an austenite-martensite phase transformation induced by impact in a CuAlNi shape-memory alloy. Acta Mater 45:1671

    Article  Google Scholar 

  7. Abeyaratne R, Vedantam S (2003) A lattice-based model of the kinetics of twin boundary motion. J Mech Phys Solids 51(9):1675–1700. https://doi.org/10.1016/S0022-5096(03)00069-3

    MathSciNet  Article  MATH  Google Scholar 

  8. T\(\mathring{\rm u}\)ma K, Stupkiewicz S, Petryk H, (2016) Size effects in martensitic microstructures: finite-strain phase field model versus sharp-interface approach. J Mech Phys Solids 95:284–307. https://doi.org/10.1016/j.jmps.2016.04.013

  9. Ahluwalia R, Quek SS, Wu DT (2015) Simulation of grain size effects in nanocrystalline shape memory alloys. J Appl Phys 117:244305. https://doi.org/10.1063/1.4923044

    Article  Google Scholar 

  10. Vedantam S (2006) Constitutive equations for rate-dependent pseudoelastic behaviour of shape memory alloys. Smart Mater Struct 15:1172

    Article  Google Scholar 

  11. Hildebrand F, Abeyaratne R (2008) An atomistic investigation of the kinetics of detwinning. J Mech Phys Solids 56:1296

    MathSciNet  Article  Google Scholar 

  12. Tadmor EB, Ortiz M, Phillips R (1996) Quasicontinuum analysis of defects in solids. Phil Mag A 73:1529–1563

    Article  Google Scholar 

  13. Gullett PM, Horstemeyer MF, Baskes MI, Fang H (2008) A deformation gradient tensor and strain tensors for atomistic simulations. Model Simul Mater Sci Eng 16(1):015001. https://doi.org/10.1088/0965-0393/16/1/015001

    Article  Google Scholar 

  14. Zimmerman JA, Bammann DJ, Gao H (2009) Deformation gradients for continuum mechanical analysis of atomistic simulations. Int J Solids Struct 46(2):238–253. https://doi.org/10.1016/j.ijsolstr.2008.08.036

    Article  MATH  Google Scholar 

  15. Wang G, Al-Ostaz A, Cheng AHD, Mantena PR (2009) Hybrid lattice particle modeling: theoretical considerations for a 2D elastic spring network for dynamic fracture simulations. Comput Mater Sci 44(4):1126–1134. https://doi.org/10.1016/j.commatsci.2008.07.032

    Article  Google Scholar 

  16. Puglisi G, Truskinovsky L (2000) Mechanics of a discrete chain with bi-stable elements. J Mech Phys Solids 48(1):1–27. https://doi.org/10.1016/S0022-5096(99)00006-X

    MathSciNet  Article  MATH  Google Scholar 

  17. Frenkel J, Kontorova T (1938) On the theory of plastic deformation and twinning. Proc Z Sowj 13:1–10

    MATH  Google Scholar 

  18. Fermi E, Pasta J, Ulam S (1955) Studies of nonlinear problems, Techical Report LA-1940, Los Alamos Scientific Laboratory

  19. Atkinson W, Cabrera N (1965) Motion of a Frenkel-Kontorowa dislocation in a one-dimensional crystal. Phys Rev 138(3A):763–766. https://doi.org/10.1103/PhysRev.138.A763

    Article  Google Scholar 

  20. Vedantam S, Mohanraj S (2009) Structural phase transitions in a discrete one-dimensional chain. Int J Appl Mech 01(03):545–556. https://doi.org/10.1142/S1758825109000290

    Article  Google Scholar 

  21. Truskinovsky L, Vainchtein A (2014) Solitary waves in a nonintegrable Fermi-Pasta-Ulam chain. Phys Rev E 90:042903

    Article  Google Scholar 

  22. Truskinovsky L, Vainchtein A (2006) Kinetics of martensitic phase transitions: lattice model. SIAM J Appl Math 66(2):533–553. https://doi.org/10.1137/040616942

    MathSciNet  Article  MATH  Google Scholar 

  23. Mahendaran U, Rao BC, Vedantam S (2020) Constitutively informed multi-body interactions for lattice particle models, Comp Meth Appl Mech Eng in press

  24. Hane KF, Shield TW (2000) Microstructure in a cubic to orthorhombic transition. J Elas 59:267–318

    Article  Google Scholar 

  25. Charlotte M, Truskinovsky L (2012) Lattice dynamics from a continuum viewpoint. J Mech Phys Solids 60(8):1508–1544. https://doi.org/10.1016/j.jmps.2012.03.004

    Article  Google Scholar 

  26. Ericksen JL (2008) On the Cauchy-Born rule. Math Mech Solids 13(3–4):199–220. https://doi.org/10.1177/1081286507086898

    MathSciNet  Article  MATH  Google Scholar 

  27. Vedantam S, Abeyaratne R (2005) A Helmholtz free-energy function for a Cu-Al-Ni shape memory alloy. Int J Nonlinear Mech 40(2–3):177–193. https://doi.org/10.1016/j.ijnonlinmec.2004.05.005

    Article  MATH  Google Scholar 

  28. Hirth JP, Pond RC (1996) Steps, dislocations and disconnections as interface defects relating to structure and phase transformations. Acta Mater 44:4749–4763

    Article  Google Scholar 

  29. Bray D, Howe J (1996) High-resolution transmission electron microscopy investigation of the face-centered cubic/hexagonal close-packed martensite transformation in Co-31.8 wt pct Ni alloy: Part 1. Plate interfaces and growth ledges. Metall Mater Trans A 27A:3362–3370

    Article  Google Scholar 

  30. Kunin IA (1982) Elastic media with microstructure. 1. One-dimensional models. Springer, New York

    MATH  Google Scholar 

  31. Pego RL, Smereka P, Weinstein MI (1995) Oscillatory instability of solitary waves in a continuum model of lattice vibrations. Nonlinearity 8:921–941

    MathSciNet  Article  Google Scholar 

  32. Christov CI, Maugin GA, Velarde ME (1996) Well-posed Boussinesq paradigm with purely spatial higher-order derivatives. Phys Rev E 54:3621–3638

    Article  Google Scholar 

  33. Rosenau P (1986) Dynamics of nonlinear mass spring chains near the continuum limit. Phys Rev Lett A 118(5):222–227

    MathSciNet  Article  Google Scholar 

  34. Kresse O, Truskinovsky L (2003) Mobility of lattice defects: discrete and continuum approaches. J Mech Phys Solids 51:1305–1332

    MathSciNet  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srikanth Vedantam.

Additional information

Dedicated to Prof. J. N. Reddy on the occasion of his 75th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leninpandian, P., Vedantam, S. Frenkel-Kontorova model of propagating ledges on austenite-martensite phase boundaries. Ann. Solid Struct. Mech. 12, 89–96 (2020). https://doi.org/10.1007/s12356-020-00060-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12356-020-00060-w

Keywords

  • Frenkel–Kontorova model
  • Phase transitions
  • Kinetic relation
  • Shape memory alloys