Skip to main content

Variational fracture mechanics to model compressive splitting of masonry-like materials

Abstract

A regularized variational model of fracture mechanics for masonry-like materials has been recently proposed: this is based upon the competition between bulk-energy release and surface-energy production due to the nucleation and/or progression of cracks, assumed they can open in mode I only. This model is applied here to derive a theory of strength in confined masonry-like materials, where an inhomogeneous state of stress is due to heterogeneous inclusions or boundary constraints. The theory accords the phenomenon of rupture an energetic interpretation. Under tension, opening of mode I fractures at right angle to the axis of loading is clearly energetically favorable; under compression, the solid splits because in doing so the stress is released so to reduce the total energy. Numerical experiments have been performed for prismatic solids under fixed lateral confinement and increasing uniaxial tension or compression up to failure. Representative domains for the strength under biaxial stress are thus deduced.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Notes

  1. 1.

    The variable s is analogous to the classical damage parameter first introduced by Kachanov [26]. To be precise, Kachanov used the complementary variable ψ = 1 − s called continuity, but here we have preferred s instead of ψ to follow [20].

  2. 2.

    The two absolute values of \(\overline{u}\) are different because the resistance under traction is expected to be much lower than under compression.

References

  1. 1.

    Giaquinta M, Giusti E (1985) Researches on the equilibrium of masonry structures. Arch Ration Mech Anal 88:359–392

    MathSciNet  MATH  Article  Google Scholar 

  2. 2.

    Heyman J (1966) The stone skeleton. Int J Sol Struct 2:249–256

    Article  Google Scholar 

  3. 3.

    Di Pasquale S (1992) New trends in the analysis of masonry structures. Meccanica 27:173–184

    Google Scholar 

  4. 4.

    Wang EZ, Schrive NG (1995) Brittle fracture in compression: mechanisms, models and criteria. Eng Frac Mech 52:1107–1126

    Article  Google Scholar 

  5. 5.

    Mohr O (1990) Welche Umstaende bedingen die Elastizitaetsgrenze und den Bruch eines Materials?. Zeitschrift des Vereines deutscher Ingenieure 44:l–12

    Google Scholar 

  6. 6.

    Vardoulakis I, Sulem J (1995) Bifurcation analysis in geomechanics. Blackie Academic and Professional, London

  7. 7.

    Labuz JF, Bridell JM (1993) Reducing frictional constraint in compression testing through lubrication. Int J Rock Mech Min Sci Geomech Abstr 30:451–455

    Article  Google Scholar 

  8. 8.

    Jaeger GC, Cook NGW (1976) Fundamentals of rock mechanics. 2nd Ed., Champan and Hall, London

    Google Scholar 

  9. 9.

    Schulson EM, Gies MC, Lasonde GJ, Nixon WA (1989) The effect of the specimen-platen interface on internal cracking and brittle fracture of ice under compression: high-speed photography. J Glaciol 35:378–382

    Google Scholar 

  10. 10.

    Santiago SD, Hilsdorf HK (1973) Fracture mechanism of concrete under compressive loads. Cem Concr Res 3:363–388

    Article  Google Scholar 

  11. 11.

    Blakey FA (1952) Mechanism of fracture of concrete. Nature 170:1120

    Article  Google Scholar 

  12. 12.

    Slate FO, Hover KC (1984) Microcracking in concrete. In: Fracture mechanics of moncrete: material characterizaton and testing. Martinus Nikhoff, The Hague

  13. 13.

    Bell JF (1973) The experimental foundations of solid mechanics. Encycl Phys Via/l, Sect. 3.3, Springer, Berlin

  14. 14.

    Vardoulakis I, Exadaktylos G, Kourkoulis SK (1998) Bending of marble with intrinsic length scales : a gradient theory with surface energy and size effects. J Phys IV 8: Pr8/399–Pr8/406

  15. 15.

    Horii H, Nemat-Nasser S (1986) Brittle failure in compression: splitting, faulting and brittle-ductile transition. Phil Trans R Soc Lond A319:337–374

    Article  Google Scholar 

  16. 16.

    Ortiz M (1985) A constitutive theory for the inelastic behavior of concrete. Mech Mater 4:67–93

    Article  Google Scholar 

  17. 17.

    Vardoulakis J, Labuz J, Papamichos E, Tronvoll J (1998) Continuum fracture mechanics of uniaxial compression on brittle materials. Int J Sol Struct 35:4313–4335

    MATH  Article  Google Scholar 

  18. 18.

    Bhattacharya K, Ortiz M, Ravichandran G (1998) An energy-based model of compressive failure in inhomogeneous brittle solids. J Mech Phys Solids 46: 2171–2181

    MathSciNet  MATH  Article  Google Scholar 

  19. 19.

    Freddi F, Royer-Carfagni G (2010) Regularized variational theories of fracture: a unified approach. J Mech Phys Solids 58:1154–1174

    MathSciNet  Article  Google Scholar 

  20. 20.

    Bourdin B, Francfort GA, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48:797–826

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    Ambrosio L, Tortorelli VM (1990) Approximation of functional depending on jumps by elliptic functionals via \(\Upgamma\)—convergence. Comm Pure Appl Math XLIII:999–1036

    MathSciNet  Article  Google Scholar 

  22. 22.

    Del Piero G (1989) Constitutive equation and compatibility of the external loads for linear elastic masonry-like materials. Meccanica 24:150–162

    MathSciNet  MATH  Article  Google Scholar 

  23. 23.

    Bazant Z, Planas ST (1998) Fracture and size-effect in concrete and other Quasi-Brittle materials. CRC press, New York

    Google Scholar 

  24. 24.

    Kupfer H, Hilsdorf HK, Rüsch H (1969) Behaviour of concrete under biaxial stress. J Am Concr Inst 66:656–666

    Google Scholar 

  25. 25.

    Del Piero G, Owen DR (1993) Structured deformations of continua. Arch Rat Mech Anal 124:99–155

    MathSciNet  MATH  Article  Google Scholar 

  26. 26.

    Kachanov LM (1958) On the rupture-time under creep conditions. Izv Akad Nauk SSSR 8:26–31. (in Russian)

    Google Scholar 

  27. 27.

    Lancioni G, Royer-Carfagni G (2009) The variational approach to fracture mechanics. A practical applicaton to the French Panthéon in Paris. J Elast 95:1–30

    MathSciNet  MATH  Article  Google Scholar 

  28. 28.

    Bangerth W, Hartmann R, Kanschat G deal.II Differential equations analysis library, Technical reference. http://www.dealii.org

  29. 29.

    Page AW (1981) A biaxial failure criterion for brick masonry in the tension-tension range. Int J Mason Constr 1:26–29

    Google Scholar 

  30. 30.

    Page AW (1981) The biaxial compressive strength of brick masonry. Proc Inst Civ Eng Part 2 71:893–906

    Google Scholar 

  31. 31.

    Page AW (1983) The strength of brick masonry under biaxial tension-compression.Int J Mason Constr 3:26–31

    Google Scholar 

Download references

Acknowledgments

Partial support of the Italian MIUR (Ministry of Education, University and Research) under the PRIN2008 program is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gianni Royer-Carfagni.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Freddi, F., Royer-Carfagni, G. Variational fracture mechanics to model compressive splitting of masonry-like materials. Ann. Solid Struct. Mech. 2, 57–67 (2011). https://doi.org/10.1007/s12356-011-0018-4

Download citation

Keywords

  • Uniaxial tension
  • Uniaxial compression
  • Fracture mechanics
  • Variational calculus
  • Strength domain
  • Biaxial loading