Skip to main content

Advertisement

Log in

Numerical study of a thermo-hydro-mechanical damage model for unsaturated porous media

  • Original Article
  • Published:
Annals of Solid and Structural Mechanics

Abstract

The “THHMD” damage model presented in this article is dedicated to non-isothermal unsaturated porous media. The proposed frame is based on the use of independent state variables (net stress, suction and thermal stress). Stress/strain relations are derived from a postulated expression of the free energy, accounting for the existence of residual strains. The damaged mechanical rigidities are computed by applying the Principle of Equivalent Elastic Energy for each stress state variable. The influence of damage on liquid water and vapor transfers is accounted for by introducing internal length parameters, related to specific damage-induced intrinsic conductivities. The “THHMD” model has been implemented in \(\Uptheta\)-Stock Finite Element code. The mechanical aspects of the model have been validated by comparing the numerical results with experimental reference data. A nuclear waste repository model has been reproduced. The elastic predictions are in satisfactory agreement with the reference results. The parametric studies performed on damage parameters meet the theoretical expectations. Damage gets higher with higher damage rigidities. Water permeability grows with damage and with the internal length parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Arson C (2009) Etude théorique et numérique de l’endommagement thermo-hydro-mécanique des milieux poreux non saturés. Ph.D. thesis, Ecole Nationale des Ponts et Chaussées, Paris

  2. Arson C, Gatmiri B (2008) Excavation damage in unsaturated porous media. Key Eng Mater Adv Fract Damage Mech VII 385–387:137–140

    Google Scholar 

  3. Arson C, Gatmiri B (2008) On damage modelling in unsaturated clay rocks. Phys Chem Earth 33:S407–S415

    Google Scholar 

  4. Arson C, Gatmiri B (2009) A mixed damage model for unsaturated porous media. Comptes-Rendus de l’Académie des Sciences de Paris, section Mécanique 337:68–74

    Article  Google Scholar 

  5. Arson C, Gatmiri B (2009) Parametric study on the performance of a thm damage model for unsaturated porous media. In: Proceedings of the 1st international symposium on computational geomechanics, Juan-les-Pins, France, 29 april——1er mai 2009, pp 53–562

  6. Bazant Z, Jirasek M (2002) Nonlocal integral formulations of plasticity and damage: survey of progress. J Eng Mec ASCE 128:1119–1149

    Article  Google Scholar 

  7. Chiarelli A, Shao J (2002) Modélisation élastoplastique couplée à l’endommagement anisotrope pour des argilites. Revue Française de Génie Civil 6:115–130

    Article  Google Scholar 

  8. Collins I, Houlsby G (1997) Application of thermomechanical principles to the modelling of geotechnical materials. Proc Math Phys Eng Sci 453(1964):1975-2001

    Article  MATH  Google Scholar 

  9. Cordebois J, Sidoroff F (1982) Endommagement anisotrope en élasticité et plasticité. Journal de Mécanique théorique et Appliquée, Supplementary Volume, pp 45–60

  10. Coussy O, Dangla P (2002) Approche énergétique du comportement des sols non saturés, chap. 4. In: Coussy O, Fleureau J-M (eds) Mécanique des sols non saturés. Hermes Science, Paris, pp 131–174

  11. Dangla P, Malinsky L, Coussy O (1997) Plasticity and imbibition-drainage curves for unsaturated soils: a unified approach. In: Pietruszczak, Pande (eds) Proceedings of numerical models in geomechanics. Balkema, Rotterdam, pp 141–146

  12. de Borst R, Pamin J, Geers M (1999) On coupled gradient-dependent plasticity and damage theories with a view to localization analysis. Eur J Mech A Solids 18:939–962

    Article  MATH  Google Scholar 

  13. Dragon A, Halm D (1996) Modélisation de l’endommagement par méso-fissuration: comportement unilatéral et anisotropie induite. C R Acad Sci Paris T. 322(Série IIb):275–282

    Google Scholar 

  14. Dragon A, Halm D, Désoyer T (2000) Anisotropic damage in quasi-brittle solids: modelling, computational issues and applications. Comput Methods Appl Mech Eng 183:331–352

    Article  MATH  Google Scholar 

  15. Durner W (1994) Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resour Res 30(2):211–223

    Article  Google Scholar 

  16. Fredlund D, Morgenstern N (1978) Stress state variables for unsaturated soils. J Geotech Eng Div ASCE 104(11):447–466

    Google Scholar 

  17. Gatmiri B (2002) Framework of a non linear fully coupled thermo-hydro-mechanical behaviour of unsaturated porous media. In: Keynote lecture of the 3rd Iranian international conference on geotechnical engineering and soil mechanics. Teheran, Iran

  18. Gatmiri B (2005) Non linear behaviour of a multiphase engineering barrier in nuclear waste disposal. In: Proceedings of 16th ICSMGE. Osaka, Japan, pp 2261–2264

  19. Gatmiri B, Arson C (2008) Theta-stock, a powerful tool for thermohydromechanical behaviour and damage modelling of unsaturated porous media. Comput Geotech 35:890–915

    Article  Google Scholar 

  20. Gatmiri B, Seyedi M, Delage P, Fry F (1997) A new suction-based mathematical model for thermo-hydro-mechanical behavior of unsaturated porous media. In: Proceedings of the 6th international symposium on numerical models in geomechanics, NUMOG VI. Quebec, Canada, pp 291–296

  21. Gens A, Garcia-Molina A, Olivella S, Alonso E, Huertas F (1998) Analysis of full-scale in situ test simulating repository conditions. Int J Numer Anal Methods Geomech 22:515–548

    Article  MATH  Google Scholar 

  22. Halm D, Dragon A (2002) Modélisation de l’endommagement par mésofissuration du granite. Revue Française de Génie Civil 17:21–33

    Article  Google Scholar 

  23. Hansen N, Schreyer H (1994) A thermodynamically consistent framework for theories of elastoplasticity coupled with damage. Int J Solids Struct 31(3):359–389

    Article  MATH  Google Scholar 

  24. Homand F, Chiarelli A, Hoxha D (2002) Caractéristiques physiques et mécaniques du granite de la vienne et de l’argilite de l’est. Revue Française de Génie Civil 6:11–20

    Article  Google Scholar 

  25. Houlsby G (1997) The work input to an unsaturated granular material. Geotechnique 47(1):193–196

    Article  Google Scholar 

  26. Kachanov M (1992) Effective elastic properties of cracked solids: critical review of some basic concepts. Appl Mech Rev 45(8):304–335

    Google Scholar 

  27. Lemaître J, Desmorat R (2005) Engineering damage mechanics. Ductile, creep, fatigue and brittle failure. Springer, Berlin

    Google Scholar 

  28. Martino J, Chandler N (2004) Excavation-induced damage studies at the underground research laboratory. Int J Rock Mech Min Sci 41:1413–1426

    Article  Google Scholar 

  29. Mertens J, Bastiaens W, Dehandschutter B (2004) Characterization of induced discontinuities in the boom clay around the underground excavations (urf, mol, belgium). Appl Clay Sci 26:413–428

    Article  Google Scholar 

  30. Philip J, de Vries D (1957) Moisture movement in porous materials under temperature gradients. Trans Am Geophys Union 38(2):222–232

    Google Scholar 

  31. Pires-Domingues S, Costa-Mattos H, Rochinha F (1998) Modelling of nonlinear damage on elastic brittle materials. Mech Res Commun 25(2):147–153

    Google Scholar 

  32. Pollock D (1986) Simulation of fluid flow and energy transport processes associated with high-level radioactive waste disposal in unsaturated alluvium. Water Resour Res 22(5):765–775

    Google Scholar 

  33. Pruess K, Wang J, Tsang Y (1990) On thermohydrologic conditions near high-level nuclear wastes emplaced in partially saturated fractured tuff.2. Effective continuum approximation. Water Resour Res 26:1249–1261

    Google Scholar 

  34. Shao J, Zhou H, Chau K (2005) Coupling between anisotropic damage and permeability variation in brittle rocks. Int J Numer Anal Methods Geomech 29:1231–1247

    Article  MATH  Google Scholar 

  35. Sulem J, Ouffroukh H (2006) Shear banding in drained and undrained triaxial tests on a saturated sandstone: porosity and permeability evolution. Int J Rock Mech Min Sci 43:292–310

    Article  Google Scholar 

  36. Swoboda G, Yang Q (1999) An energy-based damage model of geomaterials 1. Formulation and numerical reults. Int J Solids Struct 36:1719–1734

    Article  MATH  Google Scholar 

  37. VanGenuchten M (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  38. Zimmerman R, Hadgu T, Bodvarsson G (1996) A new lumped-parameter model for flow in unsaturated dual-porosity media. Adv Water Resour 19:317–327

    Article  Google Scholar 

Download references

Acknowledgments

This research has been supported by the European project TIMODAZ (Thermal Impact on the Damaged Zone Around a Radioactive Waste Disposal in Clay Host Rocks), launched by EURATOM (European Community of Atomic Energy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chloé Arson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arson, C., Gatmiri, B. Numerical study of a thermo-hydro-mechanical damage model for unsaturated porous media. Ann. Solid Struct. Mech. 1, 59–78 (2010). https://doi.org/10.1007/s12356-010-0009-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12356-010-0009-x

Keywords

Navigation