Skip to main content
Log in

Use of Distillery Effluents in Dilution of Molasses for Ethanol Production

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

The reuse of wastewater produced in industrial processes is important to contribute to reducing the use of water obtained from natural resources. Vinasse, one of the most important byproducts in ethanol production, could be reused in ethanolic fermentation. However, its use can cause problems during the fermentation process. This work aimed to evaluate the effect of using different effluents in molasses dilution and its consequences on the fermentation process for ethanol production. The different diluents were vinasse “in natura”, condensed water from an industrial vinasse concentrator, condensed water from a multiple-effect evaporator, multijet condenser water, standard treatment water from natural resources (with chlorine), and deionized water. According to the results, must dilution could be made using Vinasse Concentrator Water and Multiple-effect Evaporator Water without reducing the quality of ethanolic fermentation. These effluents can replace the water from hydric resources in must dilution, lowering the environmental impact of ethanol production by reducing the water consumed and chloride used in this industrial process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albuquerque, Fernando Medeiros. 2011. Processo de Fabricação do açúcar. Recife: Editora Universitária da Universidade Federal de Pernambuco.

    Google Scholar 

  • Alemu, Ayele, Minale Getachew, Gulam Mohammed Sayeed. Ahmed, Vineet Tirth, and Ali Algahtani. 2022. Effect of vinasse recycling on effluent reduction from distilleries: Case of metehara distillery, Ethiopia. Processes 10(1): 7. https://doi.org/10.3390/pr10010007.

    Article  CAS  Google Scholar 

  • Amid, Sama, Mortaza Aghbashlo, Meisam Tabatabaei, Keikhosro Karimi, Abdul-Sattar. Nizami, Mohammad Rehan, Homa Hosseinzadeh-Bandbafha, Mohamad Mojarab Soufiyan, Wanxi Peng, and Su Shiung Lam. 2021. Exergetic, exergoeconomic, and exergoenvironmental aspects of an industrial-scale molasses-based ethanol production plant. Energy Conversion and Management 227: 113637. https://doi.org/10.1016/j.enconman.2020.113637.

    Article  CAS  Google Scholar 

  • Amorim, Henrique Vianna. 2005. Fermentação alcoólica, ciência & tecnologia. Piracicaba: Fermentec.

    Google Scholar 

  • Arshad, Muhammad, Mazhar Abbas, and Munawar Iqbal. 2019. Ethanol production from molasses: Environmental and socioeconomic prospects in Pakistan: Feasibility and economic analysis. Environmental Technology & Innovation 14: 100317. https://doi.org/10.1016/j.eti.2019.100317.

    Article  Google Scholar 

  • Baird, Rodger B., Andrew D. Clesceri, and Eugene W. Rice. 2017. Standard methods for the examination of water and wastewater. Alexandria: American Public Health Association American Water Works Association; Water Environment Federation. https://doi.org/10.2105/SMWW.2882.216.

    Book  Google Scholar 

  • Barbosa, José Carlos, and Walter Maldonado Júnior. 2015. Experimentação Agronômica e Agroestat - Sistema para análises estatísticas de ensaios agronômicos. Jaboticabal: Gráfica Multipress Ltda.

    Google Scholar 

  • Bassi, Ana Paula Guarnieri, Leticia Meneguello, Anna Livia Paraluppi, Beatriz Cristina Pecoraro Sanches, and Sandra Regina Ceccato-Antonini. 2018. Interaction of Saccharomyces cerevisiaeLactobacillus fermentumDekkera bruxellensis and feedstock on fuel ethanol fermentation. Antonie Van Leeuwenhoek 111(9): 1661–1672. https://doi.org/10.1007/s10482-018-1056-2.

    Article  CAS  Google Scholar 

  • Basso, Luiz C., Henrique V. de Amorim, Antonio J. de Oliveira, and Mario L. Lopes. 2008. Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Research 8(7): 1155–1163. https://doi.org/10.1111/j.1567-1364.2008.00428.x.

    Article  CAS  Google Scholar 

  • Bregagnoli, Flavia Cecilio Ribeiro, Márcia Justino Rossini. Mutton, Gisele Cristina Ravaneli, and Marcelo Bregagnoli. 2009. Controle de contaminantes da fermentação etanólica por biocidas naturais. Expressão 10: 175–183.

    Google Scholar 

  • Cardias, Bruna Barcelos, Thalles Canton Trevisol, Grazianne Guimarães Bertuol, Jorge Alberto Vieira Costa, and Lucielen Oliveira Santos. 2021. Hydrolyzed spirulina biomass and molasses as substrate in alcoholic fermentation with application of magnetic fields. Waste and Biomass Valorization 12: 175–183. https://doi.org/10.1007/s12649-020-00966-x.

    Article  CAS  Google Scholar 

  • Ceccato-Antonini, Sandra Regina. 2018. Conventional and nonconventional strategies for controlling bacterial contamination in fuel ethanol fermentations. World Journal of Microbiology and Biotechnology 34: 80. https://doi.org/10.1007/s11274-018-2463-2.

    Article  CAS  Google Scholar 

  • Centro de Tecnologia Canavieiro. 2011. Métodos Analíticos. In Manual de Controle Químico da Fabricação de Açúcar, 4, 1–49. Piracicaba: Centro de Tecnologia Canavieira.

  • Darvishi, Farshad, and Nooshin Abolhasan Moghaddami. 2019. Optimization of an industrial medium from molasses for bioethanol production using the Taguchi statistical experimental-design method. Fermentation 5(1): 14. https://doi.org/10.3390/fermentation5010014.

    Article  CAS  Google Scholar 

  • Delgado, Afrânio A., Marco A. A. Cesar, and Fábio C. da Silva. 2019. Elementos de Tecnologia e Engenharia da Produção do Açúcar, Etanol e Energia. Piracicaba: Fundação dos Estudos Agrários Luiz de Queiroz - FEALQ.

    Google Scholar 

  • Della-Bianca, Bianca Eli, Thiago Olitta Basso, Boris Ugarte Stambuk, Luiz Carlos Basso, and Andreas Karoly Gombert. 2013. What do we know about the yeast strains from the Brazilian fuel ethanol industry? Applied Microbiology and Biotechnology 97: 979–991. https://doi.org/10.1007/s00253-012-4631-x.

    Article  CAS  Google Scholar 

  • Dias, Marina Oliveira Souza, Rubens Maciel Filho, Paulo Eduardo Mantelatto, Otávio Cavalett, Carlos Eduardo Vaz Rossell, Antonio Bonomi, and Manoel Regis Lima Verde Leal. 2015. Sugarcane processing for ethanol and sugar in Brazil. Environmental Development 15: 35–51. https://doi.org/10.1016/j.envdev.2015.03.004.

    Article  Google Scholar 

  • Fernandes, A.C. 2011. Cálculos na Agroindústria da Cana-de-açúcar. Piracicaba: Sociedade dos Técnicos Açúcareiros e Alcooleiros do Brasil - STAB.

    Google Scholar 

  • Godoi, Leandro Augusto Gouvêa, Priscila Rosseto Camiloti, Alan Nascimento Bernardes, Bruna Larissa Sandy Sanchez, Ana Paula Rodrigues Torres, Absai da Conceição Gomes, and Lívia Silva Botta. 2019. Seasonal variation of the organic and inorganic composition of sugarcane vinasse: Main implications for its environmental uses. Environmental Science and Pollution Research 26: 29267–29282. https://doi.org/10.1007/s11356-019-06019-8.

    Article  CAS  Google Scholar 

  • Ingledew, W.M. 2003. Water reuse in fuel alcohol plants: effect on fermentation—Is a “zero discharge” concept attainable? In The alcohol textbook, ed. Kate A. Jacques, T.P. Lyons, and Dave R. Kelsall, 343–354. Nottingham: Nottingham University Press.

    Google Scholar 

  • Jacques, Kate A., T.P. Lyons, and Dave R. Kelsall. 2003. The alcohol textbook—A reference for the beverage, fuel, and industrial alcohol industries. Nottingham: Nottingham University Press.

    Google Scholar 

  • Lee, S.S., F.M. Robison, and Henry Y. Wang. 1981. Rapid determination of yeast viability. Biotechnology and Bioengineering Symposium 11: 641–649.

    Google Scholar 

  • Lopes, Mario Lucio, Silene Cristina de Lima Paulillo, Alexandre Godoy, Rudimar Antonio Cherubin, Marcel Salmeron Lorenzi, Fernando Henrique Carvalho Giometti, Claudemir Domingues Bernardino, Henrique Berbert de Amorim Neto, and Henrique Vianna de Amorim. 2016. Ethanol production in Brazil: A bridge between science and industry. Brazilian Journal of Microbiology 47(1): 64–76. https://doi.org/10.1016/j.bjm.2016.10.003.

    Article  CAS  Google Scholar 

  • Madaleno, Leonardo Lucas, Marcelo Henrique Armoa, and Mariana Carina Frigieri Salaro. 2019. Controle da contaminação na água de diluição usada na preparação de mosto de melaço. Ciência & Tecnologia 11: 5–14.

    Google Scholar 

  • Navarro, Antonio Roberto, M. del C. Sepúlveda, and María Cristina Rubio. 2000. Bioconcentration of vinasse from the alcoholic fermentation of sugar cane molasses. Waste Management 20(7): 581–585. https://doi.org/10.1016/S0956-053X(00)00026-X.

    Article  CAS  Google Scholar 

  • Oliva-Neto, Pedro, Claudia Dorta, Flavia Azevedo, Valeria Gomes, and Douglas Fernandes. 2013. The Brazilian technology of fuel ethanol fermentation—Yeast inhibition factors and new perspectives to improve the technology. Formatex 1: 371–379.

    Google Scholar 

  • Oliveira, Matheus Ribeiro Barbosa, Ricardo Fleury Sunhiga Filho, Eduardo de Castro Mattos, Ernandes Benedito Pereira, and Antonio Sampaio Baptista. 2019. Produção de etanol a partir de melaço de cana. Revista De Estudos Ambientais 21(1): 38–45.

    Article  Google Scholar 

  • Oliveira, Ricardo Pinheiro Souza, Beatriz Rivas Torres, Mario Zilli, Daniela Araújo Viana Marques, Luiz Carlos Basso, and Attilio Converti. 2009. Use of sugar cane vinasse to mitigate aluminum toxicity to saccharomyces cerevisiae. Archives of Environmental Contamination and Toxicology 57: 488–494. https://doi.org/10.1007/s00244-009-9287-x.

    Article  CAS  Google Scholar 

  • Pereira, Thaís Johnson. 2009. Estudo da utilização de vinhaça no preparo da cuba e na fermentação alcoólica. UNAERP archive. https://tede.unaerp.br/bitstream/handle/tede/15/THAIS%20JOHNSON%20PEREIRA.pdf?sequence=1&isAllowed=y. Accessed 11 April 2022.

  • Pinto, Cláudio Plaza. 1999. Tecnologia da digestão anaeróbia da vinhaça e desenvolvimento sustentável. Cetesb archive. https://cetesb.sp.gov.br/biogas/wp-content/uploads/sites/3/2014/01/pinto.pdf. Accessed 04 April 2022.

  • Ravaneli, Gisele, Débora Branquinho, Leonardo Lucas Madaleno, Miguel Ângelo Mutton, José Paulo Stupiello, and Márcia Justino Rossini Mutton. 2011. Spittlebug impacts on sugarcane quality and ethanol production. Pesquisa Agropecuaria Brasileira 46(2): 120–129. https://doi.org/10.1590/S0100-204X2011000200002.

    Article  Google Scholar 

  • Rebelato, Marcelo Giroto, Leonardo Lucas Madaleno, and Marize Rodrigues. 2014. Avaliação do desempenho ambiental dos processos industriais de usinas sucroenergéticas: Um estudo na bacia hidrográfica do rio Mogi-Guaçu. Revista De Administração Da UNIMEP 12: 122–151.

    Article  Google Scholar 

  • Rein, Peter. 2017. Cane sugar engineering. Berlin: Verlag Dr. Albert Bartens.

    Book  Google Scholar 

  • Ribeiro, Natália Novais, Lidyane Aline de Freita, Letícia Fernanda Trallia, Aline Ferreira da Silva, Cristhyane Millena de Freita, Franciele Quintino Mendes, Vitor Teixeira, Calisto Nonato da Silva Junior, and Márcia Justino Rossini Mutton. 2019. Otimização das condições fermentativas de Pichia membranifaciens para produção de etanol de segunda geração. Química Nova 42(7): 720–728. https://doi.org/10.21577/0100-4042.20170385.

    Article  CAS  Google Scholar 

  • Seo, Seung-Oh, Sung-Kyun Park, Suk-Chae Jung, Choong-Min Ryu, and Jun-Seob Kim. 2020. Anti-contamination strategies for yeast fermentations. Microorganisms 8(2): 274. https://doi.org/10.3390/microorganisms8020274.

    Article  CAS  Google Scholar 

  • Silva, Bruce Wellington Amorin, Márcio Roberto Duran Filho, Luana Inada Souza Santos, Beatriz Leite, and Douglas Liberace de Matos. 2021. Projeto de reator anaeróbio de fluxo ascendente (rafa) para tratamento de vinhaça. Colloquium Exactarum 13(2): 88–99. https://doi.org/10.5747/ce.2021.v13.n2.e362.

    Article  Google Scholar 

  • Sociedade de Produtores de Açúcar e de Álcool. 1986. Avaliação do vinhoto como substituto do óleo diesel e outros usos. Brazil: Sopral.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception, design, material preparation, data collection and analysis. The first draft of the manuscript was written by NNR and VCC. All authors commented on previous versions of the manuscript. The final version of the manuscript was written, edited and revised by NNR. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Natália Novais Ribeiro.

Ethics declarations

Conflict of interest

All authors declare that they have no financial, academic, commercial, political, or personal conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 180 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, N.N., Cazadore, V.C. & Madaleno, L.L. Use of Distillery Effluents in Dilution of Molasses for Ethanol Production. Sugar Tech 25, 366–372 (2023). https://doi.org/10.1007/s12355-022-01202-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-022-01202-7

Keywords

Navigation