Skip to main content

Advertisement

Log in

New Paradigm for Vinasse Use as Fertilizer in Hydroponics

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Sugarcane agroindustry generates a large volume of residues, with the main one being vinasse. Despite its polluting potential, vinasse has great potential to meet crop nutritional demands at different vegetative stages. However, the fertilizer developed from fresh vinasse has not considered the negative effects of its application in crops. Current innovative processes have sought to reuse elements of interest from this raw material, mainly macronutrients, micronutrients, and organic matter, in hydroponic cultivation systems. This study aimed to evaluate the hydroponic cultivation of lettuce, watercress, and chicory using the nutrient film technique and the use of a fertilizer developed from vinasse for their nutrition. We compared the vinasse fertilizer with conventional salts used for vegetable nutrition. Experiments were conducted in a fully randomized design, with two treatments (conventional and vinasse-fertilizer solutions). Nutritional status diagnosis showed synergism between vinasse organic matter and plants. This is because the elements in vinasse were fundamental for plant development and decisive for its good performance in the vinasse solution (VS). Regarding nutrient absorption (e.g. N, K, Mg, Fe, Zn, and B), VS with the addition of Ca, N, and Fe had similar results as those of conventional solution (CS). The hydroponic solution proposed in this study can be applied to reuse vinasse sustainably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adediran, G.A., B.T. Ngwenya, J.F.W. Mosselmans, K.V. Heal, and B.A. Harvie. 2015. Mechanisms behind bacteria induced plant growth promotion and Zn accumulation in Brassica juncea. Journal of Hazardous Materials 283: 490–499.

    Article  CAS  PubMed  Google Scholar 

  • Almeida, H. J., V. M. V. Carmona, V. S. Cavalcante, A. B. Cecílio Filho, R. M. Prado, R. A. Flores, B. M. M. N. Borges, and M. Mauad. 2020. Nutritional and visual diagnosis in broccoli (Brassica oleracea var. italica L.) plants: Disorders in Physiological activity, nutritional efficiency and metabolism of carbohydrates. Agronomy 10(10): 1572.

  • Barthod, J., C. Rumpel, and M.F. Dignac. 2018. Composting with additives to improve organic amendments a review. Agronomy for Sustainable Development 38: 17.

    Article  Google Scholar 

  • Beninni, E.R.Y., H.W. Takahashi, and C.S.V.J. Neves. 2003. Manejo do cálcio em alface de cultivo hidropônico. Horticultura Brasileira 21 (4): 605–610.

    Article  Google Scholar 

  • Bingham, A.H., and M.F. Cotrufo. 2016. Organic nitrogen storage in mineral soil: Implications for policy and management. Science of the Total Environment 551–552: 116–126.

    Article  PubMed  CAS  Google Scholar 

  • Brdar-Jokanović, M. 2020. Boron toxicity and deficiency in agricultural plants. International Journal of Molecular Sciences 21 (4): 1424.

    Article  PubMed Central  CAS  Google Scholar 

  • Buates, J., and T. Imai. 2021. Assessment of plant growth performance and nutrient release for application of phosphorus-loaded layered double hydroxides as fertilizer. Environmental Technology and Innovation 22: 101505.

    Article  CAS  Google Scholar 

  • Buoso, S., L. Pagliari, R. Musetti, F. Fornasier, M. Martini, A. Loschi, M.C. Fontanella, and P. Ermacora. 2020. With or without you: Altered plant response to boron-deficiency in hydroponically grown grapevines infected by grapevine pinot gris virus suggests a relation between grapevine leaf mottling and deformation symptom occurrence and boron plant availability. Frontiers in Plant Science 11: 226.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cabral Filho, F.R., G.S. Vieira, N.F. Silva, E.S. Cunha, L.N.S. Santos, C.R. Rodrigues, F.N. Cunha, M.B. Teixeira, and F.A.L. Soares. 2019. Sugarcane vinasse cations dynamics in cerrado soils, Brazil. Sugar Tech 21: 38–46.

    Article  CAS  Google Scholar 

  • Carranca, C., G. Brunetto, and M. Tagliavini. 2018. Nitrogen nutrition of fruit trees to reconcile productivity and environmental concerns. Plants 7 (1): 4.

    Article  PubMed Central  CAS  Google Scholar 

  • Carvalho, R.S.C., R.G. Bastos, and C.F. Souza. 2018. Influence of the use of wastewater on nutrient absorption and production of lettuce grown in a hydroponic system. Agricultural Water Management 203: 311–321.

    Article  Google Scholar 

  • Carvalho, R.C., F.D. Mota, L.R.A. Gabriel Filho, A.E. Klar, and H. Grassi Filho. 2020. Lisímetro para medida da evapotranspiração na cultura do pimentão em sistema hidropônico com substrato. Irriga 25 (2): 361–376.

    Article  Google Scholar 

  • Castellane, P. D., and J. A. C. Araujo. 1995. Cultivo sem solo-hidroponia. Jaboticabal: Funep.

  • Chen, D., B. Cao, L. Qi, L. Yin, S. Wang, and X. Deng. 2016. Silicon-moderated K-deficiency-induced leaf chlorosis by decreasing putrescine accumulation in sorghum. Annals of Botany 118 (2): 305–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Y., B. Zhou, J. Li, H. Tang, J. Tang, and Z. Yang. 2018. Formation and change of chloroplast-located plant metabolites in response to light conditions. International Journal of Molecular Sciences 19 (3): 654.

    Article  PubMed Central  CAS  Google Scholar 

  • Clarholm, M., U. Skyllberg, and A. Rosling. 2015. Organic acid induced release of nutrients from metal-stabilized soil organic matter–The unbutton model. Soil Biology and Biochemistry 84: 168–176.

    Article  CAS  Google Scholar 

  • Colombo, C., G. Palumbo, J.Z. He, R. Pinton, and S. Cesco. 2014. Review on iron availability in soil: Interaction of Fe minerals, plants, and microbes. Journal of Soils and Sediments 14: 538–548.

    Article  CAS  Google Scholar 

  • CONAB - Brazilian National Supply Company. 2020. Acompanhamento da safra brasileira de cana-de-açúcar, segundo levantamento - safra 2020–2021. http://www.conab.gov.br/info-agro/safras/cana. Accessed 20 September 2021.

  • Du, Q., X. H. Zhao, L. Xia, C. J. Jiang, X. G. Wang, Y. Han, J. Wang, and H. Q. Yu. 2019. Effects of potassium deficiency on photosynthesis, chloroplast ultrastructure, ROS, and antioxidant activities in maize (Zea mays L.). Journal of Integrative Agriculture 18(2): 395–406.

  • Furlani, Pedro R. 1998. Instruções para o cultivo de hortaliças de folhas pela técnica de Hidroponia NFT. Campinas: Instituto Agronômico.

  • Guo, W., H. Nazim, Z. Liang, and D. Yang. 2016. Magnesium deficiency in plants: An urgent problem. The Crop Journal 4 (2): 83–91.

    Article  Google Scholar 

  • Hafeez, B., Y.M. Khanif, and M. Saleem. 2013. Role of zinc in plant nutrition–A review. American Journal of Experimental Agriculture 3 (2): 374–391.

    Article  CAS  Google Scholar 

  • Hasanuzzaman, M., M.H.M.B. Bhuyan, K. Nahar, M.S. Hossain, J.A. Mahmud, M.S. Hossen, A.A.C. Masud, and Moumita, and M. Fujita. 2018. Potassium: A Vital Regulator of plant responses and tolerance to abiotic stresses. Agronomy 8 (3): 31.

    Article  CAS  Google Scholar 

  • Hu, M., J. Peñuelas, J. Sardans, Z. Sun, B.J. Wilson, J. Huang, Q. Zhu, and C. Tong. 2018. Stoichiometry patterns of plant organ N and P in coastal herbaceous wetlands along the East China Sea: Implications for biogeochemical niche. Plant and Soil 431: 273–288.

    Article  CAS  Google Scholar 

  • Iqbal, N., N.A. Khan, A. Ferrante, A. Trivellini, A. Francini, and M.I.R. Khan. 2017. Ethylene role in plant growth, development and senescence: Interaction with other phytohormones. Frontiers in Plant Science 8: 475.

    PubMed  PubMed Central  Google Scholar 

  • Kobayashi, T., and N.K. Nishizawa. 2012. Iron uptake, translocation, and regulation in higher plants. Annual Review of Plant Biology 63: 131–152.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S., G. Li, J. Yang, X. Huang, Q. Ji, Z. Liu, W. Ke, and H. Hou. 2021. Effect of salt stress on growth, physiological parameters, and ionic concentration of water dropwort (Oenanthe javanica) cultivars. Frontiers in Plant Science 12: 1176.

    Google Scholar 

  • Laliberté, E., H. Lambers, T.I. Burgess, and S.J. Wright. 2015. Phosphorus limitation, soil-borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublands. New Phytologist 206 (2): 507–521.

    Article  PubMed  CAS  Google Scholar 

  • Lippmann, R., S. Babben, A. Menger, C. Delker, and M. Quint. 2019. Development of wild and cultivated plants under global warming conditions current biology. Cell Press 29 (24): R1326–R1338.

    CAS  Google Scholar 

  • Magwaza, S.T., L.S. Magwaza, A.O. Odindo, and A. Mditshwa. 2020. Hydroponic technology as decentralised system for domestic wastewater treatment and vegetable production in urban agriculture: A review. Science of the Total Environment 698: 134154.

    Article  CAS  PubMed  Google Scholar 

  • Malavolta, E. 1997. Avaliação do estado nutricional das plantas: princípios e aplicações. Piracicaba: Potafos.

  • Marcato, A.C.C., C.P. Souza, A.B. Paiva, C.E. Eismann, F.F. Navarro, A.F.M. Camargo, A.A. Menegário, and C.S. Fontanetti. 2019. Hybrid treatment system for remediation of sugarcane vinasse. Science of the Total Environment 659: 115–121.

    Article  CAS  PubMed  Google Scholar 

  • O’Neill, M.A., T. Ishii, P. Albersheim, and A.G. Darvill. 2004. RHAMNOGALACTURONAN II: Structure and function of a borate cross-linked cell wall pectic polysaccharide. Annual Review of Plant Biology 55: 109–148.

    Article  PubMed  CAS  Google Scholar 

  • O’Sullivan, C.A., G.D. Bonnett, C.L. McIntyre, Z. Hochman, and A.P. Wasson. 2019. Strategies to improve the productivity, product diversity and profitability of urban agriculture. Agricultural Systems 174: 133–144.

    Article  Google Scholar 

  • Ortegón, G.P., F.M. Arboleda, L. Candela, K. Tamoh, and J. Valdes-Abellan. 2016. Vinasse application to sugar cane fields: Effect on the unsaturated zone and groundwater at Valle del Cauca (Colombia). Science of the Total Environment 539: 410–419.

    Article  PubMed  CAS  Google Scholar 

  • Parra, M., S. Stahl, and H. Hellmann. 2018. Vitamin B6 and its role in cell metabolism and physiology. Cells 7 (7): 84.

    Article  PubMed Central  CAS  Google Scholar 

  • Primo-Millo, E., and M. Agustí. 2020. Vegetative growth. In The Genus Citrus, ed. Manuel Talon, Marco Caruso, and Fred G. Gmitter, 193–217. Sawston: Woodhead Publishing.

    Chapter  Google Scholar 

  • Rehman, H.U., T. Aziz, M. Farooq, A. Wakeel, and Z. Rengel. 2012. Zinc nutrition in rice production systems: A review. Plant and Soil 361: 203–226.

    Article  CAS  Google Scholar 

  • Rulli, M.M., L.B. Villegas, and V.L. Colin. 2020. Treatment of sugarcane vinasse using an autochthonous fungus from the northwest of Argentina and its potential application in fertigation practices. Journal of Environmental Chemical Engineering. 8 (5): 104371.

    Article  CAS  Google Scholar 

  • Sadeghzadeh, B. 2013. A review of zinc nutrition and plant breeding. Journal of Soil Science and Plant Nutrition 13 (4): 905–927.

    Google Scholar 

  • Sambo, P., C. Nicoletto, A. Giro, Y. Pii, F. Valentinuzzi, T. Mimmo, P. Lugli, G. Orzes, F. Mazzetto, S. Astolfi, R. Terzano, and S. Cesco. 2019. Hydroponic solutions for soilless production systems: Issues and opportunities in a smart agriculture perspective. Frontiers in Plant Science 10: 923.

    Article  PubMed  PubMed Central  Google Scholar 

  • Santos, J.D., A.L.L. Silva, J.L. Costa, G.N. Scheidt, A.C. Novak, E.B. Sydney, and C.R. Soccol. 2013. Development of a vinasse nutritive solution for hydroponics. Journal of Environmental Management 114: 8–12.

    Article  PubMed  CAS  Google Scholar 

  • Sardans, J., and J. Peñuelas. 2015. Potassium: A neglected nutrient in global change. Global Ecology and Biogeography 24 (3): 261–275.

    Article  Google Scholar 

  • Seixas, F.L., M.L. Gimenes, and N.R.C. Fernandes-Machado. 2016. Treatment of vinasse by adsorption on carbon from sugar cane bagasse. Química Nova 39 (2): 172–179.

    CAS  Google Scholar 

  • Shireen, F., M.A. Nawaz, C. Chen, Q. Zhang, Z. Zheng, H. Sohail, J. Sun, H. Cao, Y. Huang, and Z. Bie. 2018. Boron: Functions and approaches to enhance its availability in plants for sustainable agriculture. International Journal of Molecular Sciences 19 (7): 1856.

    Article  PubMed Central  CAS  Google Scholar 

  • Silva, A.P.M., J.A.M. Bono, and F.A.R. Pereira. 2014. Aplicação de vinhaça na cultura da cana-de-açúcar: Efeito no solo e na produtividade de colmos. Revista Brasileira De Engenharia Agrícola e Ambiental 18 (1): 38–43.

    Article  Google Scholar 

  • Solis-Toapanta, E., P. Fisher, and C. Gomez. 2020. Growth rate and nutrient uptake of basil in small-scale hydroponics. HortScience 55 (4): 507–514.

    Article  Google Scholar 

  • Verzeaux, J., B. Hirel, F. Dubois, P.J. Lea, and T. Tétu. 2017. Agricultural practices to improve nitrogen use efficiency through the use of arbuscular mycorrhizae: Basic and agronomic aspects. Plant Science 264: 48–56.

    Article  CAS  PubMed  Google Scholar 

  • Yan, Z., P. Li, Y. Chen, W. Han, and J. Fang. 2016. Nutrient allocation strategies of woody plants: An approach from the scaling of nitrogen and phosphorus between twig stems and leaves. Scientific Reports 6: 20099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z., X. Dong, S. Wang, and X. Pu. 2020. Benefits of organic manure combined with biochar amendments to cotton root growth and yield under continuous cropping systems in Xinjiang China. Scientific Reports 10: 4718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Coordination for the Improvement of Higher Education Personnel (CAPES) (Process #88881.593696/2020-01), and the National Council for Scientific and Technological Development (CNPq) for the research productivity grants awarded (Process #303923/2018-0 (FFP) and #315228/2020-2 (LRAGF)).

Author information

Authors and Affiliations

Authors

Contributions

LCLA got ideas and perform experiment, FFP designed the figures and realized in statistical analysis, CPC adjusted the contents, LRAGF gave main idea. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Luís Roberto Almeida Gabriel Filho.

Ethics declarations

Conflict of interest

All authors declared no conflict of interest.

Consent to participate

We consent to participate during revision and publishing manuscript in this Journal.

Consent for publication

All authors of this paper consent for publishing manuscript, tables, and figures in this Journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrade, L.C.L., Putti, F.F., Cremasco, C.P. et al. New Paradigm for Vinasse Use as Fertilizer in Hydroponics. Sugar Tech 24, 1260–1271 (2022). https://doi.org/10.1007/s12355-022-01119-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-022-01119-1

Keywords

Navigation