Skip to main content
Log in

Overexpression of α-Tubulin Gene of Sugarcane (Saccharum spp. hybrids), SoTUA, Enhances Tobacco Tolerance to Cold Stress

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Low temperature stress affects the yield and quality of crops. To adapt to abiotic stress, plant tubulin families play a crucial role to increase cell cold stability. In the present study, our aim was to develop transgenic tobacco by using a cold-responsive SoTUA gene isolated from Saccharum spp. hybrid. Based on fluorescent microscope observation and TUA gene expression analysis in different tissues, TUA gene expression was found mainly in veins. Moreover, a significant increase of TUA transcripts and protein under cold stress was detected by quantificational real-time polymerase chain reaction (qRT-PCR) and western blot in the transgenic plants. Results of peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) activities, and proline, soluble sugar and protein contents indicated oxidative damage is less than wild type (WT). Overexpression of SoTUA gene has improved the cold stress tolerance ability in tobacco.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdrakhamanova, A., Q.Y. Wang, L. Khokhlova, and P. Nick. 2003. Is microtubule disassembly a trigger for cold acclimation? Plant and Cell Physiology 44 (7): 676–686.

    Article  CAS  PubMed  Google Scholar 

  • Alscher, R.G., N. Erturk, and L.S. Heath. 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany 53 (372): 1331–1341.

    Article  CAS  PubMed  Google Scholar 

  • Anthony, R.G., S. Reichelt, and P.J. Hussey. 1999. Dinitroaniline herbicide-resistant transgenic tobacco plants generated by co-expression of a mutant α-tubulin and a β-tubulin. Nature Biotechnology 17: 712–716.

    Article  CAS  PubMed  Google Scholar 

  • Augustine, S.M., J.A. Narayan, D.P. Syamaladevi, C. Appunu, M. Chakravarhi, V. Ravichandran, and N. Subramonian. 2015. Erianthus arundinaceus HSP70 (EaHSP70) overexpression increases drought and salinity tolerance in sugarcane (Saccharum spp. hybrid). Plant Science 232: 23–34.

    Article  CAS  PubMed  Google Scholar 

  • Awasthi, R., N. Kaushal, V. Vadez, N.C. Turner, J. Berger, K.H.M. Siddique, and H. Nayyar. 2014. Individual and combined effects of transient drought and heat stress on carbon assimilation and seed filling in chickpea. Functional Plant Biology 41: 1148–1167.

    Article  CAS  PubMed  Google Scholar 

  • Bao, Y., B. Kost, and N.H. Chua. 2001. Reduced expression of α-tubulin genes in Arabidopsis thaliana specifically affects root growth and morphology, root hair development and root gravitropism. The Plant Journal 28 (2): 145–157.

    Article  CAS  PubMed  Google Scholar 

  • Bhaskara, G.B., T.N. Wen, T.T. Nguyen, and P.E. Verlues. 2017. Protein phosphatase 2Cs and microtubule-associated stress protein 1 control microtubule stability, plant growth, and drought response. The Plant Cell 29 (1): 169–191.

    Article  CAS  PubMed  Google Scholar 

  • Blume, Y.B., Y.A. Krasylenko, O.M. Demchuk, and A.L. Yemets. 2013. Tubulin tyrosine nitration regulates microtubule organization in plant cells[J]. Frontiers in Plant Science 4: 530.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brandizzi, F., and G.O. Wasteneys. 2013. Cytoskeleton-dependent endomembrane organization in plant cells: an emerging role for microtubules. Plant Journal 75 (2): 339–349.

    Article  CAS  Google Scholar 

  • Buy, D.D., A.E. Demkovych, V.Y. Priko, and Y.B. Blume. 2019. Analysis of -tubulin gene expression during cold acclimation of winter and spring soft wheat. Cytology and Genetics 53 (1): 23–33.

    Article  Google Scholar 

  • Cai, G., C.C. Del, S. Romagnoli, and M. Cresti. 2005. Pollen cytoskeleton during germination and tube growth. Current Science 89: 1853–1860.

    Google Scholar 

  • Chen, N., Y. Xu, X. Wang, C. Du, J. Du, M. Yuan, Z. Xu, and K. Chong. 2011. OsRAN2, essential for mitosis, enhances cold tolerance in rice by promoting export of intranuclear tubulin and maintaining cell division under cold stress. Plant, Cell and Environment 34 (52): 64.

    CAS  Google Scholar 

  • Chen, L.J., H.Z. Xiang, Y. Miao, L. Zhang, Z.F. Guo, J.W. Zhao, and T.L. Li. 2014. An overview of cold resistance in plants. Journal of Agronomy and Crop Science 200 (4): 237–245.

    Article  CAS  Google Scholar 

  • Chen, J.Y., Q. Khan, B. Sun, L.H. Tang, L.T. Yang, B.Q. Zhang, Y.X. Xing, D.F. Dong, and Y.R. Li. 2021. Overexpression of sugarcane SoTUA gene enhances cold tolerance in transgenic sugarcane. Agronomy Journal 113 (6): 4993–5005.

    Article  CAS  Google Scholar 

  • Chi, F., S.H. Shen, H.P. Cheng, Y.X. Jing, Y.G. Yanni, and F.B. Dazzo. 2005. Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Applied Environmental Microbiology 71 (11): 7271–7278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi, P.S., W.Y. Soh, Y.S. Kim, O.S. Yoo, and J.R. Liu. 1994. Genetic transformation and plant regeneration of watermelon using Agrobacterium tumefaciens. Plant Cell Reports 13 (6): 344–348.

    Article  CAS  PubMed  Google Scholar 

  • Christov, N.K., R. Imai, and Y. Blume. 2008. Differential expression of two winter wheat alpha-tubulin genes during cold acclimation. Cell Biology International 32 (5): 574–578.

    Article  CAS  PubMed  Google Scholar 

  • Cruz, R.P., R.A. Sperotto, D. Cargnelutti, J.M. Adamski, T.F. Terra, and J.P. Fett. 2013. Avoiding damage and achieving cold tolerance in rice plants. Food and Energy Security 2 (2): 96–119.

    Article  Google Scholar 

  • Ding, Y., Y. Shi, and S. Yang. 2019. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytologists 222 (4): 1690–1704.

    Article  Google Scholar 

  • Fan, L.L., L.S. Tang, L.F. Wu, J. Ma, and L. Yan. 2014. The limited role of snow water in the growth and development of ephemeral plants in a cold desert. Journal of Vegetation Science 25 (3): 681–690.

    Article  Google Scholar 

  • Faurobert, M., E. Pelpoir, and C. Jamila. 2007. Phenol extraction of proteins for proteomic studies of recalcitrant plant tissues. Methods in Molecular Biology 355: 9–14.

    CAS  PubMed  Google Scholar 

  • Gechev, T.S., F. Van, J.M. Breusegem, L. Denev. Stone, and C. Laloi. 2006. Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioassays 28 (11): 1091–1101.

    Article  CAS  Google Scholar 

  • Gill, S.S., and N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stresses tolerance in crop plants. Plant Physiology and Biochemistry 48: 909–930.

    Article  CAS  PubMed  Google Scholar 

  • Hare, P.D., W.A. Cress, and J. Van Staden. 1999. Proline synthesis and degradation: A model system for elucidating stress-related signal transduction. Journal of Experimental Botany 50 (333): 413–434.

    CAS  Google Scholar 

  • Horsch, R.B., J.E. Fry, N.L. Hoffman, D. Eichholtz, S.G. Rogers, and R.T. Fraley. 1985. A simple and general method for transferring genes into plants. Science 227 (1): 229–1231.

    Google Scholar 

  • Huang, R.F., and C.W. Lloyd. 1999. Gibberellic acid stabilises microtubules in maize suspension cells to cold and stimulates acetylation of α-tubulin. FEBS Letters 443 (3): 317–320.

    Article  CAS  PubMed  Google Scholar 

  • Hussey, P.J., and K. Gull. 1985. Multiple isotypes of α-and β-tubulin in the plant Phaseolus vulgaris. FEBS Letters 181 (1): 113–118.

    Article  CAS  Google Scholar 

  • Karuppanapandian, T., J.C. Moon, C. Kim, K. Manoharan, and W. Kim. 2011. Reactive oxygen species in plants: Their generation, signal transduction, and scavenging mechanisms. Australian Journal of Crop Science 5 (6): 709–725.

    CAS  Google Scholar 

  • Kerr, G.P., and J.V. Carter. 1990. Tubulin isotypes in rye roots are altered during cold acclimation. Plant Physiology 93 (1): 83–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, V.S., and K. Yadav. 2009. Proline and betaine provide protection to antioxidant and methylglyoxal detoxification systems during cold stress in Camellia sinensis (L.) O. Kuntze. Acta Physiologiae Plantarum 31 (2): 261–269.

    Article  CAS  Google Scholar 

  • Ledbetter, M.C., and K.R. Porter. 1963. A “microtubule” in plant cell fine structure. The Journal of Cell Biology 19 (1): 239–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H.S., Q. Sun, S.J. Zhao, and W.H. Zhang. 2000. Principle and technology of physiological and biochemical test in plants, 195–261. Beijing: Higher Education Press.

    Google Scholar 

  • Li, J., Y.Y. Li, Y.Y. Huang, and C.P. Yue. 2015. Study on relationships between reactive oxygen metabolism and flower bud differentiation in tobacco under low temperature stress. Crop 4: 74–80.

    Google Scholar 

  • Li, S.L., Z.G. Li, L.T. Yang, and Y.R. Li. 2018. Differential effects of cold stress on chloroplasts structures and photosynthetic characteristics in cold-sensitive and cold-tolerant cultivars of sugarcane. Sugar Tech 20 (1): 11–20.

    Article  CAS  Google Scholar 

  • Mathur, J. 2004. Cell shape development in plants. Trends in Plant Science 9 (12): 583–590.

    Article  CAS  PubMed  Google Scholar 

  • Mittler, R. 2017. ROS are good. Trends in Plant Science 22: 11–19.

    Article  CAS  PubMed  Google Scholar 

  • Nick, P. 2013. Microtubules, and signaling in abiotic stress. The Plant Journal 75: 309–323.

    Article  CAS  PubMed  Google Scholar 

  • Nyporko, A.I., O.N. Demchuk, and I.B. Blium. 2003. Analysis of structural characteristics of α-tubulins in plants with enhanced cold tolerance. Tsitologiia i Genetika 37 (6): 3–11.

    CAS  PubMed  Google Scholar 

  • Olinevich, O.V., L.P. Khokhlova, and M. Raudaskoski. 2002. The microtubule stability increases in abscisic acid-treated and cold-acclimated differentiating vascular root tissues of wheat. Journal of Plant Physiology 159 (5): 465–472.

    Article  CAS  Google Scholar 

  • Paul, A., L. Lal, P.S. Ahuja, and S. Kumar. 2012. Alpha-tubulin (CsTUA) up-regulated during winter dormancy is a low temperature inducible gene in tea [Camellia sinensis (L.) O. Kuntze]. Molecular Biology Reports 39 (4): 3485–3490.

    Article  CAS  PubMed  Google Scholar 

  • Phan, T.T., B. Sun, J.Q. Niu, Q.L. Tan, J. Li, L.T. Yang, and Y.R. Li. 2016. Overexpression of sugarcane gene SoSnRK2.1 confers drought tolerance in transgenic tobacco. Plant Cell Reports 35 (9): 1891–1905.

    Article  CAS  PubMed  Google Scholar 

  • Pütter, J. 2016. Peroxidases. Methods of enzymatic analysis, 685–690. New York: Academic Press.

    Google Scholar 

  • Rogers, S.O., and A.J. Bendich. 1994. Extraction of total cellular DNA from plants, algae and fungi. In Plant molecular biology manual, 183–190. Dordrecht: Springer.

    Chapter  Google Scholar 

  • Sanghera, G.S., S.H. Wani, W. Hussain, and N.B. Singh. 2011. Engineering cold stress tolerance in crop plants. Current Genomics 12 (1): 30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schefe, J.H., K.E. Lehmann, I.R. Buschmann, T. Unger, and F.H. Kaiser. 2006. Quantitative real-time RT-PCR data analysis: current concepts and the novel “gene expression’s CT difference” formula. Journal of Molecular Medicine 84 (11): 901–910.

    Article  CAS  PubMed  Google Scholar 

  • Sewelam, N., N. Jaspert, K. Van Der Kelen, S. Jessica, F. Henning, S. Elia, Z. Jurgen, V.B. Frank, and V.G. Maurino. 2014. Spatial H2O2 signaling specificity: H2O2 from chloroplasts and peroxisomes modulates the plant transcriptome differentially. Molecular Plant 7 (7): 1191–1210.

    Article  CAS  PubMed  Google Scholar 

  • Sun, B. 2016. effects of low temperature stress on root growth and metabolism in sugarcane seedlings and the functional analysis of a-tubilin gene, Ph.D. Dissertation of Guangxi University, Nanning, China.

  • Sun, B., G.L. Liu, T.T. Phan, L.T. Yang, Y.R. Li, and Y.X. Xing. 2017. Effects of cold stress on root growth and physiological metabolisms in seedlings of different sugarcane varieties. Sugar Tech 19 (2): 165–175.

    Article  CAS  Google Scholar 

  • Tang, Z.C. 1999. Experimental guide for modern plant physiology, 303–305. Beijing: Science Press.

    Google Scholar 

  • Verbruggen, N., and C. Hermans. 2008. Proline accumulation in plants: a review. Amino Acids 35: 753–759.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., E. Sadeghnezhad, and P. Nick. 2020. Upstream of gene expression: what is the role of microtubules in cold signalling? Journal of Experimental Botany 71 (1): 36–48.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, E., L. Zeng, and W.V. Baird. 1988. α-Tubulin missense mutations correlate with antimicrotubule drug resistance in Eleusine indica. The Plant Cell 10 (2): 297–308.

    Google Scholar 

  • Yang, P.C., and T. Mahmood. 2012. Western blot: Technique, theory, and trouble shooting. North American Journal of Medical Science 4 (9): 429–434.

    Article  Google Scholar 

  • You, J., and Z. Chan. 2015. ROS regulation during abiotic stress responses in crop plants. Frontiers in Plant Science 6: 1092.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu, Y.L., Y.Z. Li, L.L. Li, J.X. Lin, C. Zheng, and L.Y. Zhang. 2009. Overexpression of PwTUA1, a pollen-specific tubulin gene, increases pollen tube elongation by altering the distribution of alpha-tubulin and promoting vesicle transport. Journal of Experimental Botany 60: 2737–2749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, B.Q., L.T. Yang, and Y.R. Li. 2015. Physiological and biochemical characteristics related to cold resistance in sugarcane. Sugar Tech 17 (1): 49–58.

    Article  CAS  Google Scholar 

  • Zhang, B.Q., M. Shao, Y.J. Liang, X. Huang, X.P. Song, H. Chen, L.T. Yang, and Y.R. Li. 2018. Molecular cloning and expression analysis of ScTUA gene in sugarcane. Sugar Tech 21 (4): 578–585.

    Article  Google Scholar 

  • Zhou, X., W. Hu, B. Li, Y. Yang, Y. Zhang, K. Thow, L. Fan, and Y. Qu. 2019. Proteomic profiling of cotton fiber developmental transition from cell elongation to secondary wall deposition. Acta Biochimica Biophysica Sinica 51 (11): 1168–1177.

    Article  CAS  Google Scholar 

Download references

Funding

The present study was supported by the grants from the National Key Research and Development Program of China (2018YFD1000500), Guangxi Special Fund for Scientific Base and Talent (GKAD17195100), Fund for Guangxi Innovation Teams of Modern Agriculture Technology (gjnytxgxcxtd-21-03), Fund of Guangxi Key Laboratory of Sugarcane Genetic Improvement (16-K-02-01).

Author information

Authors and Affiliations

Authors

Contributions

YRL and LTY conceived and designed the study; BS and LTY performed the experiments; JYC, KQ, BQZ, YXX and YRL wrote the manuscript; JYC and BS analyzed the data; YRL revised and finalized the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Yong-Xiu Xing or Yang-Rui Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent for Publication

All authors approved for publication of this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, JY., Sun, B., Khan, Q. et al. Overexpression of α-Tubulin Gene of Sugarcane (Saccharum spp. hybrids), SoTUA, Enhances Tobacco Tolerance to Cold Stress. Sugar Tech 24, 1680–1688 (2022). https://doi.org/10.1007/s12355-022-01118-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-022-01118-2

Keywords

Navigation