Skip to main content

Advertisement

Log in

End-Use Applications of Sugarcane Trash: A Comprehensive Review

  • S.I. : Innovation for Sustainability of the Sugar Agro-Industry
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Sugarcane is a worldwide grown crop producing a large amount of residues in the form of molasses, bagasse and trash. The molasses and bagasse utilization technologies are well established and commercialized. Sugarcane trash (ST) is also a potential energy resource of biomass containing one-third energy that of sugarcane. However, its domestic applications are restricted due to lack of utilization awareness, technological impedance, harvesting difficulties and inadequate extension activities. This paper summarizes the end-use applications of ST suggested by worldwide researchers. The potential ways for utilization of ST for energy application were investigated and discussed with its merits, demerits and challenges for acceptance. In the present context, farmers utilize ST for open burning in the field (for destroying weeds and pests breeding places), mulching, compost making, fodder for livestock, burying infield to improve the fertility of soil and stacking for future use. Sugarcane produces nearly 8–10 tonnes of trash per ha. The utilization of this large quantity of trash for beneficial use is not possible for the farmers. Therefore, farmers usually burn the trash to clean the field for next crop, leading to pollution and energy waste. From reviewed data, it was found that the best end-use application of sugarcane trash is for energy generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alonso Pippo, W., and C.A.L.P.G. LuengoAlonsoamador MoralesAlberteris GarzoneCornacchia. 2011. Energy recovery from sugarcane-trash in the light of 2nd generation biofuel. part 2: Socio-economic aspects and techno-economic analysis. Waste and Biomass Valorization 2: 257–266. https://doi.org/10.1007/s12649-011-9069-3.

    Article  CAS  Google Scholar 

  • Alonso-Pippo, W., C.A. Luengo, F. Fonseca Felfli, P. Garzone, and G. Cornacchia. 2009. Energy recovery from sugarcane biomass residues: Challenges and opportunities of bio-oil production in the light of second generation biofuels. Journal of Renewable and Sustainable Energy 1 (6): 063102. https://doi.org/10.1063/1.3259170.

    Article  CAS  Google Scholar 

  • Assis de, T., Hasan J., Richard P. 2015. Co-location of a cellulosic ethanol bio refinery in an pulp and paper facility using sugarcane bagasse and straw - Brazilian case. 7th International Colloquium on Eucalyptus Pulp 26–29. https://www.eucalyptus.com.br/artigos/50_Tiago+Assis.pdf.

  • Bhardwaj, N.K., D. Kaur, S. Chaudhry, M. Sharma, and S. Arya. 2019. Approaches for converting sugarcane trash, a promising agro residue, into pulp and paper using soda pulping and elemental chlorine-free bleaching. Journal of Cleaner Production 217: 225–233. https://doi.org/10.1016/j.jclepro.2019.01.223.

    Article  CAS  Google Scholar 

  • Bhuvaneshwari, S., Hiroshan Hettiarachchi, and Jay Meegoda. 2019. Crop residue burning in India: Policy challenges and potential solutions. International Journal of Environmental Research and Public Health 16: 832. https://doi.org/10.3390/ijerph16050832.

    Article  CAS  PubMed Central  Google Scholar 

  • Bizzo, A., P.C. Waldir, D. Lenço, and J.J. CarvalhoPaulo Soto Veiga. 2014. The generation of residual biomass during the production of bio-ethanol from sugarcane, its characterization and its use in energy production. Renewable and Sustainable Energy Reviews 29: 589–603. https://doi.org/10.1016/j.rser.2013.08.056.

    Article  CAS  Google Scholar 

  • Cantarella, Heitor, Paulo Cesar Ocheuze. Trivelin, Teodoro Leonardo Michelucci. Contin, Fábio Luis Ferreira. Dias, Raffaella Rossetto, Rafael Marcelino, Renato Badran Coimbra, and José Antonio. Quaggio. 2008. Ammonia volatilisation from urease inhibitor-treated urea applied to sugarcane trash blankets. Scientia Agricola 65: 397–401.

    Article  CAS  Google Scholar 

  • Capaz, R.S., V.S.B. Carvalho, and L.A.H. Nogueira. 2013. Impact of mechanization and previous burning reduction on GHG emissions of sugarcane harvesting operations in Brazil. Applied Energy 102: 220–228.

    Article  Google Scholar 

  • Carvalho, De., M. Danila, Antonio Perez, Juan C. Garcia, Jorge Luiz Colodette, Francisco Lopez, and Manuel Jesus Díaz. 2014. Ethanol-soda pulping of sugarcane bagasse and straw. Cellulose Chemistry and Technology 48: 355–364.

    Google Scholar 

  • Chandel, A.K., S.S. da Silva, W. Carvalho, and O.V. Singh. 2012. Sugarcane bagasse and leaves: Foreseeable biomass of biofuel and bio-products. Journal of Chemical Technology and Biotechnology 87: 11–20. https://doi.org/10.1002/jctb.2742.

    Article  CAS  Google Scholar 

  • Conag, A.T., E.R. Jaye, L.K. VillahermosaCabatingan, and W. Alchris Go. 2018. Energy densification of sugarcane leaves through torrefaction under minimized oxidative atmosphere. Energy for Sustainable Development 42: 160–169. https://doi.org/10.1016/j.esd.2017.11.004.

    Article  Google Scholar 

  • de Carvalho Isaias, M., L. Manoel Regis Lima Verde, and H. Suleiman José. 2001. Sugar cane residues for power generation in the sugar/ethanol mills in Brazil. Energy for Sustainable Development 5: 77–82. https://doi.org/10.1016/S0973-0826(09)60022-3.

    Article  Google Scholar 

  • Dhanushkodi, V., and K. Padmadevi. 2018. Constraints in sugarcane trash utilization in Tiruchirappalli district of Tamilnadu. Journal of Krishi Vigyan 6: 31. https://doi.org/10.5958/2349-4433.2018.00013.2.

    Article  Google Scholar 

  • Dias, M.O.S., T.L. Junqueira, O. Cavalett, M.P. Cunha, C.D.F. Jesus, C.E.V. Rossell, RMl. Filho, and A. Bonomi. 2012. Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash. Bioresource Technology 103: 152–161. https://doi.org/10.1016/j.biortech.2011.09.120.

    Article  CAS  PubMed  Google Scholar 

  • Dotaniya, M.L., S.C. Datta, D.R. Biswas, C.K. Dotaniya, B.L. Meena, S. Rajendiran, K.L. Regar, and Manju Lata. 2016. Use of sugarcane industrial by-products for improving sugarcane productivity and soil health. International Journal of Recycling of Organic Waste in Agriculture 5: 185–194. https://doi.org/10.1007/s40093-016-0132-8.

    Article  Google Scholar 

  • Figueiredo, De., Eduardo Barretto, and Newton La Scala. 2011. Greenhouse gas balance due to the conversion of sugarcane areas from burned to green harvest in Brazil. Agriculture, Ecosystems and Environment 141: 77–85. https://doi.org/10.1016/j.agee.2011.02.014.

    Article  CAS  Google Scholar 

  • Food and Agriculture Organization (FAO). 2020. FAO-STAT: Agricultural crops database. Food and Agriculture Organization (FAO): Rome, Italy. http://faostat.fao.org/static/syb/syb_216.pdf. Accessed on 01/03/2021.

  • Franco, H.C., M.T. Junqueira, B. Pimenta, J.L.N. Carvalho, P.S.G. Magalhães, C.E.V. Rossell, O.A. Braunbeck, A.C. Vitti, O.T. Kölln, and J.R. Neto. 2013. Assessment of sugarcane trash for agronomic and energy purposes in Brazil. Scientia Agricola 70: 305–312. https://doi.org/10.1590/S0103-90162013000500004.

    Article  Google Scholar 

  • Graham, M.H., R.J. Haynes, and J.H. Meyer. 2002. Soil organic matter content and quality: Effects of fertilizer applications, burning and trash retention on a long-term sugarcane experiment in South Africa. Soil Biology and Biochemistry 34: 93–102. https://doi.org/10.1016/S0038-0717(01)00160-2.

    Article  CAS  Google Scholar 

  • Hass, A., and I.M. Lima. 2018. Effect of feed source and pyrolysis conditions on properties and metal sorption by sugarcane bio-char. Environmental Technology and Innovation 10: 16–26.

    Article  Google Scholar 

  • Hassuani, S.J., J.E.A.R. Da Silva, and J.L.M. Neves. 2005. Sugarcane trash recovery alternatives for power generation. In Proc. ISSCT 25: 394–402.

    Google Scholar 

  • https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Effect+of+feed+source+and+pyrolysis+conditions+on+properties+and+metal+sorption+by+sugarcane+bio-char&btnG=

  • Jain, N., A. Bhatia, and H. Pathak. 2014. Emission of air pollutants from crop residue burning in India. Aerosol and Air Quality Research 14: 422–430. https://doi.org/10.4209/aaqr.2013.01.0031.

    Article  CAS  Google Scholar 

  • Jorapur, R., and A.K. Rajvanshi. 1997. Sugarcane leaf-bagasse gasifiers for industrial heating applications. Biomass and Bioenergy 13(3):141–146. https://www.sciencedirect.com/science/article/abs/pii/S0961953497000147

  • Kaur, A. 2017. Crop residue in Punjab agriculture-status and constraints. Journal of Krishi Vigyan 5: 22. https://doi.org/10.5958/2349-4433.2017.00005.8.

    Article  Google Scholar 

  • Kumar, R., D. Verma, B.L. Singh, U. Kumar, and Shweta. 2010. Composting of sugar-cane waste by-products through treatment with microorganisms and subsequent vermicomposting. Bioresource Technology 101: 6707–6711. https://doi.org/10.1016/j.biortech.2010.03.111.

    Article  CAS  PubMed  Google Scholar 

  • Lal, R. 2005. World crop residues production and implications of its use as a biofuel. Environment International 31: 575–584. https://doi.org/10.1016/j.envint.2004.09.005.

    Article  CAS  PubMed  Google Scholar 

  • Landell, Marcos Guimarães, Maximiliano de Andrade, Salles Scarpari, Mauro Alexandre Xavier, Ivan Antônio, Antônio dos Anjos, Sampaio Baptista, Cláudio. Lima, Daniel de Aguiar, Nunes da Silva, Márcio Aurélio Pitta. Bidóia, Sandro Roberto Brancalião, and José Antônio. Bressiani. 2013. Residual biomass potential of commercial and pre-commercial sugarcane cultivars. Scientia Agricola 70: 299–304.

    Article  Google Scholar 

  • Larrahondo, J.E., E.F. Castillo, Y. Peralta, A. Jaramillo, A. Palma, C. Briceño, and F. Giraldo. 2009. Impact of extraneous matter on post-harvest sucrose losses and quality parameters in sugarcane. Sugar Tech 11 (2): 171–175. https://doi.org/10.1007/s12355-009-0026-4.

    Article  CAS  Google Scholar 

  • Martín, C. 2021. Pretreatment of crop residues for bioconversion. Agronomy 11 (5): 924. https://doi.org/10.3390/en14144102.

    Article  CAS  Google Scholar 

  • Mendoza, T.C. 2014. Reducing the carbon footprint of sugar production in the Philippines. Journal of Agricultural Technology 10 (1): 289–308.

    CAS  Google Scholar 

  • Michael, S., and M. Carlos. 2006. Production of fuel ethanol from sugarcane bagasse and sugarcane trash. In Congress on Sugar and Sugar Cane Derivatives, Havana, Cuba pp. 19–22.

  • Mohan, Prasanthrajan, and Duraisamy Ponnusamy. 2011. Addressing the challenges of sugarcane trash decomposition through Effective Microbes. In Proceedings of the 2011 International Conference on Food Engineering and Biotechnology 229–233. https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Addressing+the+challenges+of+sugarcane+trash+decomposition+through+Effective+Microbes&btnG=

  • Mohan, P., and D. Ponnusamy. 2011. Addressing the challenges of sugarcane trash decomposition through Effective Microbes. In Proceedings of the 2011 International Conference on Food Engineering and Biotechnology pp. 229–233.

  • Mukesh, S., and Vijaya Rani. 2017. Performance evaluation of machinery for sugarcane handling and trash management. International Journal of Agricultural Engineering 10: 234–238.

    Article  Google Scholar 

  • Nakhla, Dalia A., Y.I. Mahmoud, and Salah El Haggar. 2017. Production of compost and organic fertilizer from sugarcane residues. Advances in Ecological and Environmental Research 69–89. http://www.ss-pub.org/wp-content/uploads/2017/02/AEER2016091701.pdf.

  • Negrete, J.C. 2019. Law for the prohibition of the burning of sugar cane in Mexico. Acta Scientific Agriculture 3 (5): 171–174.

    Google Scholar 

  • New South Wales (NSW) Environment Protection Authority (EPA). 2019. Air quality guidance note: Agricultural stubble burning. Local Government Air Quality Toolkit. https://www.epa.nsw.gov.au//media/epa/corporatesite/resources/air/mod3p3agstubble07268.pdf?la=en&hash=EF1A38C12B7C38811C7715E268534AD1800A2AD8. Accessed on 12 April 2021.

  • Ohm, Tae-In., Jong-Seong. Chae, Jeong-Ku. Kim, and Oh. Sae-Cheon. 2015. Study on the characteristics of biomass for co-combustion in coal power plant. Journal of Material Cycles and Waste Management 17: 249–257.

    Article  CAS  Google Scholar 

  • Patil, Dhanraj A. 2019. Sustainable biomass utilization in India: Policy implications for cane trash an alternative fuel for bagasse cogeneration in rural sugar industry. Journal of Emerging Technologies and Innovative Research 6 (1): 90–97.

    Google Scholar 

  • Pierossi, M.A., and F.C. Bertolani. 2018. Sugarcane trash as feedstock for biorefineries. Advances in Sugarcane Biorefinery. https://doi.org/10.1016/B978-0-12-804534-3.00002-1.

    Article  Google Scholar 

  • Pierossi, M.A., H.W. Bernhardt, and T. Funke. 2016. Sugarcane leaves and tops: Their current use for energy and hurdles to be overcome, particularly in South Africa, for greater utilisation. In Proceedings of the Annual Congress-South African Sugar Technologists’ Association 89: 350–360.

    Google Scholar 

  • Pippo, W.A., and C.A. Luengo. 2013. Sugarcane energy use: Accounting of feedstock energy considering current agro-industrial trends and their feasibility. International Journal of Energy and Environmental Engineering 4: 10–16. https://doi.org/10.1186/2251-6832-4-10.

    Article  CAS  Google Scholar 

  • Pippo, W., C. Luengo, L. Alberteris, G. Pino, and J. Neto. 2014. Energy recovery from sugarcane: Study of heating value variations of sugarcane-trash with moisture content during the milling season. American Journal of Biomass and Bioenergy 3 (3): 1–33. https://doi.org/10.7726/ajbb.2014.1001.

    Article  Google Scholar 

  • Powar, R.V., S.A. Mehetre, T.R. Powar, S.B. Patil, J.S. Ghatge, and Y.V. Patil. 2021a. Life Cycle Assessment-Based Comparison of Sugar and Jaggery Production: A Case Study from Western Maharashtra India. Sugar Tech. https://doi.org/10.1007/s12355-021-01046-7.

    Article  Google Scholar 

  • Powar, R.V., and S. Gangil. 2015. Effect of temperature on iodine value and total carbon contain in bio-char produced from soybean stalk in continuous feed reactor. International Journal of Agricultural Engineering 8: 26–30.

    Article  Google Scholar 

  • Powar, R.V., S.B. Patil, M.D. Gurav, P.R. Sabale, and T.R. Powar. 2021. Techno-Economic Assessment of Sugarcane Nursery for Successful Commercialization. Agri-Entrepreneurship: Challenges and Opportunities pp. 322–343.

  • Quirk, R.G., L. Van Zwieten, S. Kimber, Morris A. Downie, A. Connell, J. Rust, and S. Petty. 2010. The role of bio-char in management of sugarcane. In Proc. Int. Soc. Sugar Cane Technol 27:10. https://www.atamexico.com.mx/wp-content/uploads/2017/11/AGRONOMY-23-Quirk.pdf

  • Rathod, Prakashkumar, K.C. Veeranna, B. Ramachandra, and Dattu Reddy. 2017. Utilization of crop residues for livestock feeding: A field experience. XXVI Annual Conference of Society of Animal Physiologists of India (SAPI) 66–75.

  • Reid, M.J., and G.R.E. Lionnet. 1989. The effect of tops and trash on cane milling based on trials at Maidstone. Proceeding South Africa Sugar Technology Association 63: 3–6.

    Google Scholar 

  • Rein, P.W. 2005. The effect of green harvesting on a sugar mill. Proceeding of ISSCT 25 (513): 519.

    Google Scholar 

  • Rentizelas, A.A., I.P. Tatsiopoulos, and A. Tolis. 2009. An optimization model for multi-biomass tri-generation energy supply. Biomass and Bioenergy 33: 223–233. https://doi.org/10.1016/j.biombioe.2008.05.008.

    Article  Google Scholar 

  • Robertson, Fiona A., and Peter J. Thorburn. 2007. Management of sugarcane harvest residues: Consequences for soil carbon and nitrogen. Soil Research. https://doi.org/10.1071/SR06080.

    Article  Google Scholar 

  • Rossetto, R., F.L.F. Dias, M.G.A. Landell, H. Cantarella, S. Tavares, A.C. Vitti, and D. Perecin. 2010. N and K fertilisation of sugarcane ratoons harvested without burning. In Proceeding International Society of Sugar Cane Technology 27: 1–8.

    Google Scholar 

  • Scott, R.P. 1977. The limitations imposed on crushing rate by tops and trash. Proceeding of South Africa Sugar Technology Association 51: 164–166.

    Google Scholar 

  • Seabra, J.E.A., and I.C. Macedo. 2011. Comparative analysis for power generation and ethanol production from sugarcane residual biomass in Brazil. Energy Policy 39: 421–428. https://doi.org/10.1016/j.enpol.2010.10.019.

    Article  CAS  Google Scholar 

  • Seebaluck, V., and D. Seeruttun. 2009. Utilisation of sugarcane agricultural residues: Electricity production and climate mitigation. Progress in Industrial Ecology, an International Journal 6: 168. https://doi.org/10.1504/PIE.2009.029081.

    Article  Google Scholar 

  • Singh, Pushpa, Archna Suman, Priyanka Tiwari, Namita Arya, Asha Gaur, and A.K. Shrivastava. 2008. Biological pretreatment of sugarcane trash for its conversion to fermentable sugars. World Journal of Microbiology and Biotechnology 24: 667–673.

    Article  CAS  Google Scholar 

  • Smithers, J. 2014. Review of sugarcane trash recovery systems for energy cogeneration in South Africa. Renewable and Sustainable Energy Reviews 32: 915–925. https://doi.org/10.1016/j.rser.2014.01.042.

    Article  Google Scholar 

  • Soares, C.C.D.S.P., F.M. Okuno, D.G. Duft, D.J. Carvalho, J. Morandi, P.C.G. Júnior, C.R. Trez, P.E. Mantelatto, and M.R.L.V. Leal. 2019. Commercial sugarcane dry cleaning systems in brazil: Progress and challenges. Bio-Energy Research 12 (4): 920–929.

    CAS  Google Scholar 

  • Gómez, Edgardo Olivares, Renata Torres Gomes de Souza, George Jackson de Moraes Rocha, Eduardo de Almeida, and Luís Augusto Barbosa Cortez. 2014a. Sugarcane trash as feedstock for second generation processes. In Sugarcane bioethanol — R&D for Productivity and Sustainability, Luis Augusto Barbosa Cortez 637–660. https://doi.org/10.5151/BlucherOA-Sugarcane-sugarcanebioethanol_56.

  • Suma, R., and C.M. Savitha. 2015. Integrated sugarcane trash management: A novel technology for sustaining soil health and sugarcane yield. Advances in Crop Science and Technology 3 (1): 1–4. https://doi.org/10.4172/2329-8863.1000160.

    Article  CAS  Google Scholar 

  • Treedet, W., and R. Suntivarakorn. 2012. A Comparison of energy conversion between pyrolysis and gasification process for bio-fuel production from sugarcane trash. Journal of Biobased Materials and Bioenergy 6 (6): 622–626.

    Article  CAS  Google Scholar 

  • Treedet, W., and R. Suntivarakorn. 2011. Sugar cane trash pyrolysis for bio-oil production in a fluidized bed reactor. In World Renewable Energy Congress-Sweden. https://doi.org/10.3384/ecp11057140.

    Article  Google Scholar 

  • Wood, A.W. 1991. Management of crop residues following green harvesting of sugarcane in north Queensland. Soil and Tillage Research 20 (1): 69–85. https://doi.org/10.1016/0167-1987(91)90126-I.

    Article  Google Scholar 

  • Yadav, R.L., S.R. Prasad, R. Singh, and V.K. Srivastava. 1994. Recycling sugarcane trash to conserve soil organic carbon for sustaining yields of successive ratoon crops in sugarcane. Bioresource Technology 49: 231–235. https://doi.org/10.1016/0960-8524(s94)90045-0.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The corresponding author acknowledges the Dr. D. Y. Patil College of Agricultural Engineering and Technology, Talsande, India, for encouraging and supporting for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Powar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Powar, R.V., Mehetre, S.A., Powar, T.R. et al. End-Use Applications of Sugarcane Trash: A Comprehensive Review. Sugar Tech 24, 699–714 (2022). https://doi.org/10.1007/s12355-022-01107-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-022-01107-5

Keywords

Navigation