Skip to main content

Coconut Sugar- a Potential Storehouse of Nutritive Metabolites, Novel Bio-products and Prospects

Abstract

Coconut sugar is prepared by concentration of inflorescence sap, popularly called as neera or Kalparasa®, collected by tapping the unopened coconut spadix. The sap in its original form contains 14–16% sucrose which upon heating at 90–95 °C turns into long threads followed by agitation or beating to form a crystalline or amorphous sugar. The coconut sugar is brown in color and contains 2–3% moisture. Unlike the commercially available sugars which are laden with high calories, palm-based sugars are rich in amino acids, vitamins, minerals, polyphenols and antioxidants. Moreover, the glycemic index (GI) of the sugar is relatively low making it a suitable healthy sweetener for all the age groups. A kilogram of sugar can be produced from around 7L of sap. A coconut tree can produce on an average 400–500 L of sap equivalent to 60–70 kg sugar year−1. A tree which produces 100 nuts per year provides a glucose equivalent of ~ 38.5 kg in its economic yield, while tapping and producing sugar offers a nearly 3.5 folds high glucose equivalent of 133 kg. In addition to coconut sugar a number of second line products can be developed using the sugar as a base ingredient. As it is a healthy product it fetches premium price both in domestic and international markets. Thus, tapping trees and processing sap into sugar not only empower farmers but also generate enormous employment for the tappers, technicians and sales personnel and also assures a quality product to consumers. This review discusses the raw material supply, production and recent developments in the production process, nutritive value, bio products and prospects of coconut sugar.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6

Availability of Data and Material

All data is available within the manuscript.

References

  • Amoa-Awua, W.K., E. Sampson, and K. Tano-Debrah. 2007. Growth of yeasts, lactic and acetic acid bacteria in palm wine during tapping and fermentation from felled oil palm (Elaeis guineensis) in Ghana. Journal of Applied Microbiology 102 (2): 599–606.

    Article  CAS  PubMed  Google Scholar 

  • Anonymous 2016, Annual Report 2015–16, ICAR-CPCRI, Kasaragod.

  • Anonymous 2019, Annual Report 2018–19, ICAR-CPCRI, Kasaragod.

  • Apriyantono, A., A. Aristyani, Y. Nurhayati, S.B. Lidya, and S.T. Soekarto. 2002. Rate of browning reaction during preparation of coconut and palm sugar. International Congress Series Ed. Elsevier 1245: 275–278.

    Article  CAS  Google Scholar 

  • Asghar, M.T., Y.A. Yusof, M.N. Mokhtar, M.E. Yaacob, H.M. Ghazali, J. Varith, L.S. Chang, and Y.N. Manaf. 2020a. Processing of coconut sap into sugar syrup using rotary evaporation, microwave, and open-heat evaporation techniques. Journal of the Science of Food and Agriculture 100 (10): 4012–4019.

    Article  CAS  PubMed  Google Scholar 

  • Asghar, M.T., Y.A. Yusof, M. Noriznan, M.E. Yaacob, H. Mohd Ghazali, L.S. Chang, and Y.N. Manaf. 2020b. Effect of processing method on vitamin profile, antioxidant properties and total phenolic content of coconut (Cocos nucifera L) sugar syrup. International Journal of Food Science & Technology 55 (7): 2762–2770.

    Article  CAS  Google Scholar 

  • A-sun, K., B. Thumthanaruk, S. Lekhavat, and R. Jumnongpon. 2016. Effect of spray drying conditions on physical characteristics of coconut sugar powder. International Food Research Journal 23 (3): 1315–1319.

    CAS  Google Scholar 

  • Atputharajah, J.D., S. Widanapathirana, and U. Samarajeewa. 1986. Microbiology and biochemistry of natural fermentation of coconut palm sap. Food Microbiology 3: 273–280.

    Article  Google Scholar 

  • Barbara, S., and M. Michael. 2004. Changes in chemical composition of pumpkin seeds during the roasting process for production of pumpkin seed oil (part 2: Volatile compounds). Food Chemistry 84: 367–374.

    Article  CAS  Google Scholar 

  • Borse, B.B., L.J.M. Rao, K. Ramalakshmi, and B. Raghavan. 2007. Chemical composition of volatiles from coconut sap (Neera) and effect of processing. Food Chemistry 101 (3): 877–880.

    Article  CAS  Google Scholar 

  • BUCHI 2019. Industrial Evaporation Solutions: Reliable performance for large volumes, in https://www.domagroupeu/web/app/webroot/uploads/file/files/Industrial%20Evaporation%20Solutions%20enpdf, Ed by BUCHI. BUCHI, pp 1–28.

  • CBI. 2016. Exporting palm sugar to Europe?. CBI Ministry of Foreign Affairs. Retrieved from https://www.cbi.eu/market-information/honey-sweeteners/palm-sugar/palm sugar-europe, Accessed 04 Febr 2019.

  • Chatterjee, S., G. Sugilal, and S.V. Prabhu. 2019. Heat transfer in a partially filled rotary evaporator. International Journal of Thermal Sciences 142: 407–421.

    Article  Google Scholar 

  • Dalibard, C. 1999. Overall view on the tradition of tapping palm trees and prospects for animal production. Livestock Research for Rural Development 11 (1): 1–37.

    Google Scholar 

  • Francisco-Ortega, J., and S. Zona. 2013. La savia dulce de las palmeras, una fuente de bebidas, alcohol, vinagre, miel y azúcar. VIERAEA 41: 91–113.

    Google Scholar 

  • Ghosh, D. K., A. Bandyopadhyay, D. Baidyanath, G. Kaushik, K.B. Hebbar, P. Chowdappa. 2016. Method of the preparation of fresh coconut inflorescence sap (Kalparasa) based sweets'' Patent Application No. 201631013187.

  • Gopal, M., S. Shil, A. Gupta, K.B. Hebbar, and M. Arivalagan. 2021. Metagenomic investigation uncovers presence of probiotic-type microbiome in Kalparasa® (fresh unfermented coconut inflorescence sap). Frontiers in Microbiology 12: 662783. https://doi.org/10.3389/fmicb.2021.662783.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta, R.C., V.K. Jain, and G. Shanker. 1980. Palm sap as a potential starting material for vinegar production. Research and Industry 25: 5–7.

    CAS  Google Scholar 

  • Hebbar, K.B., A.C. Mathew, M. Arivalagan, K. Samsudeen, and G.V. Thomas. 2013. Value added products from neera. Indian Coconut Journal 56 (4): 28–33.

    Google Scholar 

  • Hebbar, K.B., M.R. Manikantan, and P. Chowdappa. 2017. Kalparasa to boost rural economy. Indian Horticulture 62 (1): 71–74.

    Google Scholar 

  • Hebbar, K. B., M. Arivalagan, M. R. Manikantan, A. C. Mathew, and P. Chowdappa. 2015a. Kalparasa collection and value addition. In Technical bulletin no. 92, ICAR-CPCRI, Kasaragod, Kerala.

  • Hebbar, K.B., M. Arivalagan, K.C. Pavithra, T.K. Roy, M. Gopal, K.S. Shivashankara, and P. Chowdappa. 2020. Nutritional profiling of coconut (Cocos nucifera L.) inflorescence sap collected using novel coco-sap chiller method and its value added products. Journal of Food Measurement and Characterization 14 (5): 2703–2712.

    Article  Google Scholar 

  • Hebbar, K.B., M. Arivalagan, M.R. Manikantan, A.C. Mathew, C. Thamban, G.V. Thomas, and P. Chowdappa. 2015b. Coconut inflorescence sap and its value addition as sugar—Collection techniques, yield, properties and market perspective. Current Science 109 (8): 1–7.

    Article  Google Scholar 

  • Hebbar, K.B., R. Pandiselvam, M.R. Manikantan, M. Arivalagan, S. Beegum, and P. Chowdappa. 2018. Palm Sap—quality profiles, fermentation chemistry, and preservation methods. Sugar Tech 20: 621–634. https://doi.org/10.1007/s12355-018-0597-z.

    Article  CAS  Google Scholar 

  • Hebbar, K. B. and Augustine. 2021. ‘Cocosap chiller’ Patent No 373309

  • Ho, C.W., W.W. Aida, M.Y. Maskat, and H. Osman. 2007. Changes in volatile compounds of palm sap (Arenga pinnata) during the heating process for production of palm sugar. Food Chemistry 102 (4): 1156–1162.

    Article  CAS  Google Scholar 

  • Hoffmann, H., W. Mauch, and W. Untze. 1985. Zucker und Zuckerwaren, 204–210. Berlin, Germany: Verlag Paul Parey.

    Google Scholar 

  • Igwemmar, N., S. Kolawole, and I. Imran. 2013. Effect of heating on vitamin C content of some selected vegetables. International Journal of Scientific & Technology Research 2: 209–212.

    Google Scholar 

  • Karseno, E., T. Yanto, R. Setyowati, and P. Haryanti. 2018. Effect of pH and temperature on browning intensity of coconut sugar and its antioxidant activity. Food Research 2: 32–38.

    Article  Google Scholar 

  • Labrotovap, What is a Rotary evaporator? https://labrotovap.com/what-is-a-rotary-evaporator/ [27-11-2019]

  • Leonelli, C., and T.J. Mason. 2010. Microwave and ultrasonic processing: Now a realistic option for industry. Chemical Engineering and Processing: Process Intensification 49: 885–900.

    Article  CAS  Google Scholar 

  • Levang, P. 1988. Le cocotier est aussi une plante sucrière = Coconut is also a sugar crop. Oléagineux 43: 159–164.

    Google Scholar 

  • Manikantan, M.R., P.P. Shameena Beegum, R. Pandiselvam, and K.B. Hebbar. 2020. Coconut milk Peda. Kalpa CPCRI Newsletter 39 (1): 4.

    Google Scholar 

  • Martins, S.I.F.S., W.M.F. Jongen, and M.A.J.S. van Boekel. 2001. A review of Maillard reaction in food and implications to kinetic modeling. Trends in Food Science and Technology 11: 364–373.

    Article  Google Scholar 

  • Meste, M.L., D. Champion, G. Roudaut, G. Blond, and D. Simatos. 2002. Glass transition and food technology: A critical appraisal. Journal of Food Science 67 (7): 2444–2458.

    Article  Google Scholar 

  • Moore, J.C., J. Spink, and M. Lipp. 2012. Development and application of a database of food ingredient fraud and economically motivated adulteration from 1980 to 2010. Journal of Food Science 77 (4): R118–R126.

    Article  CAS  PubMed  Google Scholar 

  • Naknean, P., N. Juntorn, and T. Yimyuan. 2014. Influence of clarifying agents on the quality of pasteurised palmyra palm sap (Borassus flabellifer Linn.). International Journal of Food Science & Technology 49 (4): 1175–1183.

    Article  CAS  Google Scholar 

  • Nathanael, W.R.N. 1966. “A Tapping” technique for the coconut palm. Ceylon Coconut Planters’ Review IV 4: 87–99.

    Google Scholar 

  • Nurhadi, B., N. Sukri, R.A. Saputra, F.I. Wandhani, and A.I. Nurlita. 2020. Physical characteristics of amorphous and crystalline coconut sugar powder with the addition of tricalcium phosphate (TCP) as an anticaking agent. International Journal of Food Science. https://doi.org/10.1155/2020/5320173.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nurhadi, B. 2016. Maltodextrin-incorporated-vacuum-dried honey powder: Processing and stability. Cork: University College Cork.

    Google Scholar 

  • Nurhadi, B., and S. Nurhasanah 2010. Sifat Fisik Bahan Pangan; Widya Padjadjaran: Bandung

  • Nurhadi, B., and Y.H. Roos. 2017. Influence of anti-caking agent on the water sorption isotherm and flow-ability properties of vacuum dried honey powder. Journal of Food Engineering 210: 76–82.

    Article  CAS  Google Scholar 

  • Nurhadi, B., Y.H. Roos, and V. Maidannyk. 2016. Physical properties of maltodextrin DE 10: Water sorption, water plasticization and enthalpy relaxation. Journal of Food Engineering 174: 68–74.

    Article  CAS  Google Scholar 

  • Nwachukwu, I.N., V.I. Ibekwe, R.N. Nwabueze, and B.N. Anyanwu. 2006. Characterisation of palm wine yeast isolates for industrial utilization. African Journal Biotechnology 5: 1725–1728.

    CAS  Google Scholar 

  • Ogbulie, T.E., J.N. Ogbulie, and H.O. Njoku. 2007. Comparative study on the microbiology and shelf life stability of palm wine from Elaeis guineensis and Raphia hookeri obtained from Okigwe, Nigeria. African Journal of Biotechnology 6: 914–922.

    CAS  Google Scholar 

  • Okoma, D.M.J., K.J.L. Konan, and R.R. Assa. 2020. Vitamin and osidic composition of table sugars from the inflorescences sap of 03 coconut cultivars (Cocos nucifera L.) in Ivory Coast. Food and Nutrition Sciences 11 (12): 1117–1126.

    Article  CAS  Google Scholar 

  • Palzer, S. and K. Sommer. 2010. Caking of water-soluble amorphous and crystalline food powders. In Food engineering interfaces (pp. 491–514). Springer, New York, NY.

  • Pethiyagoda, U. 1979. Coconut inflorescence sap. Planter (Malaysia) 55: 390–397.

    Google Scholar 

  • Rajesh, M.K., K.S. Muralikrishna, S.S. Nair, K.B. Krishna, T.M. Subrahmanya, K.P. Sonu, K. Subaharan, H. Sweta, P.T. Keshava, C. Neeli, and I. Karunasagar. 2020. Facile coconut inflorescence sap mediated synthesis of silver nanoparticles and its diverse antimicrobial and cytotoxic properties. Materials Science and Engineering: C 111: 110834.

    Article  CAS  Google Scholar 

  • Redhead. J. 1989. Utilization of tropical foods: trees, In FAO food and nutrition paper no 47:3.FAO, Rome, p. 52.

  • Roos, Y.H. 1995. Phase transitions in foods. California: Academic Press Inc.

    Google Scholar 

  • Samsudeen, K., V. Niral, B.A. Jerald, M. Kumar, P. Sugatha, and K.B. Hebbar. 2013. Influence of variety and season in the inflorescence sap production in Cocos nucifera L. J. Plant. Crops 41 (1): 57–61.

    Google Scholar 

  • Sanyang, M.L., S.M. Sapuan, M. Jawaid, M.R. Ishak, and J. Sahari. 2016. Recent developments in sugar palm (Arenga pinnata) based biocomposites and their potential industrial applications: A review. Renew. Sust. Energy Rev. 54: 533–549.

    Article  CAS  Google Scholar 

  • Schmid, K. H., A. Meffert, G. Schenker, and A. Asbeck. 1990. Process for controlling foam in food processing and production: U.S. Patent No. 4,942,049. Washington DC. (USA): U.S. Patent and Trademark Office. https://patents.google.com/patent/US4942049A/en

  • Sekhon, B.S. 2009. Pharmaceutical co-crystals—a review. Ars Pharmaceutical 50 (3): 99–117.

    Google Scholar 

  • Shameena Beegum, P.P., P.N. Jwala, M.R. Manikantan, R. Pandiselvam, S. Shil, S. Neenu, and K.B. Hebbar. 2021. Effect of coconut milk, tender coconut and coconut sugar on the physico-chemical and sensory attributes in ice cream. Journal of Food Science and Technology. https://doi.org/10.1007/s13197-021-05279-y.

    Article  PubMed  Google Scholar 

  • Singh, P., S.N. Singh, A.K. Tiwari, S.K. Pathak, A.K. Singh, S. Srivastava, and N. Mohan. 2019. Integration of sugarcane production technologies for enhanced cane and sugar productivity targeting to increase farmers’ income: strategies and prospects. Biotech 9 (2): 48. https://doi.org/10.1007/s13205-019-1568-0.

    Article  Google Scholar 

  • Sohn, M., and C.T. Ho. 1995. Ammonia generation during thermal degradation of amino acids. Journal of Agricultural and Food Chemistry 43 (12): 3001–3003.

    Article  CAS  Google Scholar 

  • Srikaeo, K., and R. Thongta. 2015. Effects of sugarcane, palm sugar, coconut sugar and sorbitol on starch digestibility and physicochemical properties of wheat based foods. International Food Research Journal 22 (3): 923–929.

    CAS  Google Scholar 

  • Starzak, M., and M. Mathlouthi. 2010. Formation of amorphous sugar in the syrup film—a key factor in modelling of industrial sugar drying. Food Chemistry 122 (2): 349–409.

    Article  CAS  Google Scholar 

  • Sudha, R., V. Niral, K.B. Hebbar, V. Selvamani, and K. Samsudeen. 2019. Influence of genotype and season on yield and quality of coconut inflorescence sap. International Journal of Current Microbiology and Applied Sciences 8 (6): 2280–2288.

    Article  CAS  Google Scholar 

  • Tosun, M. 2013. Detection of adulteration in honey samples added various sugar syrups with 13C/12C isotope ratio analysis method. Food Chemistry 138 (2–3): 1629–1632.

    Article  CAS  PubMed  Google Scholar 

  • Trinidad, T.P. 2015. Characterizing coconut sap sugar and syrup as a promising functional food/ingredient Department of Science and Technology. Food and Nutrition Research Institute, Bicutan, Taguig City, Metro Manila, Philippines. https://doi.org/10.1136/bmjopen-2015-forum2015abstracts.79.

    Article  Google Scholar 

  • Trinidad, T.P., A.C. Mallillin, R.S. Sagum, and R.R. Encabo. 2010. Glycemic index of commonly consumed carbohydrate foods in the Philippines. Journal of Functional Foods 2: 271–274. https://doi.org/10.1016/j.jff.2010.10.002.

    Article  CAS  Google Scholar 

  • Winkler, F.J., and H.L. Schmidt. 1980. Applications of 13C isotope mass spectrometry in food analysis. Zeitschrift Für Lebensmittel-Untersuchung Und Forschung 171 (2): 85–94.

    Article  CAS  Google Scholar 

  • Wrage, J., S. Burmester, J. Kuballa, and S. Rohn. 2019. Coconut sugar: Production process, chemical characterization, and sensory properties. LWT—Food Science and Technology 112: 108227. https://doi.org/10.1016/j.lwt.2019.05.125.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the funding for this study from Indian Council of Agricultural Research (ICAR) (ICAR-CPCRI Project No: 1000766014).

Author information

Authors and Affiliations

Authors

Contributions

Study design and conceptualization: KBH; drafting of various sections of the manuscript: KBH, SVR, DKG, PPS, RP, MMR and MAC; Read and approved the final version of the manuscript: All authors.

Corresponding author

Correspondence to K. B. Hebbar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hebbar, K.B., Ramesh, S.V., Ghosh, D.K. et al. Coconut Sugar- a Potential Storehouse of Nutritive Metabolites, Novel Bio-products and Prospects. Sugar Tech 24, 841–856 (2022). https://doi.org/10.1007/s12355-021-01101-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-021-01101-3

Keywords