Skip to main content

Advertisement

Log in

Removal of Different Quantities of Straw on the Soil Surface: Effects on the Physical Attributes of the Soil and the Productivity of Sugarcane Yield in Southeast Brazil

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Mechanized operations in sugarcane areas cause gradual soil compaction. On the other hand, the maintenance of straw on the soil can preserve the soil´s structural quality, increasing the productivity and longevity of sugarcane fields. Therefore, the objective of this study was to evaluate the effects of maintaining different levels of straw, on the decomposition dynamics, soil´s physical quality, Least Limiting Water Range (LLWR) and sugarcane yield under different edaphoclimatic conditions. The experiment was conducted in Iracemápolis and Quatá, São Paulo, Brazil. The experimental design was randomized blocks, with four replications. The plots were composed of 10 lines of sugarcane, with spacing of 1.5 m and 10 m in length. The sandy soil showed greater sensitivity to the maintenance of straw on the soil´s surface, where levels between 10 and 15 Mg ha−1 provide higher yield. The 0 Mg ha−1 dose reduced yield in both clayey soil (101 Mg ha−1) and sandy soil (98 Mg ha−1) during the 2013/14 crop. For the 2014/15 crop, in the sandy soil the lowest yield was achieved with the maintenance of 0 Mg ha−1 of straw on the soil´s surface (54 Mg ha−1). Regardless of the soil type, the removal of sugarcane straw does not influence the soil´s physical attributes and the LLWR, in the short term. However, higher doses of straw on the soil´s surface accelerated the rates of residue decomposition, induced by the maintenance of higher soil moisture associated with a lower temperature. So, maintaining straw levels between 10 and 15 Mg ha−1, contributed to greater productivity of sugarcane yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Amolo, R.A., D.O. Sigunga, and P.O. Owuor. 2017. Evaluation of soil properties of sugarcane zones and cropping systems for improved productivity in Western Kenya. International Journal of Agronomy and Agricultural Research 11: 1–16.

    Google Scholar 

  • Arshad, M.A., B. Lowery and B. Grossman. 1996. Physical tests for monitoring soil quality. In: Doran, J.W.; Jones, A.J. (Eds.). Methods for assessing soil quality. Madison, Soil Science Society of America. 123–141 (SSSA Special publication 49).

  • Awe, G.O., J.M. Reichert, and E. Fontanela. 2020. Sugarcane production in the subtropics: Seasonal changes in soil properties and crop yield in no-tillage, inverting and minimum tillage. Soil and Tillage Research 196: 104447. https://doi.org/10.1016/j.still.2019.104447.

    Article  Google Scholar 

  • Beck, H.E., N.E. Zimmermann, T.R. Mcvicar, N. Vergopolan, A. Berg, and E.F. Wood. 2018. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data 5: 180214. https://doi.org/10.1038/sdata.2018.214.

    Article  PubMed  PubMed Central  Google Scholar 

  • Blanco-Canqui, H., and R. Lal. 2009. Crop residue removal impacts on soil productivity and environmental quality. Critical Reviews in Plant Science 28: 139–163. https://doi.org/10.1080/07352680902776507.

    Article  CAS  Google Scholar 

  • Boaretto, L.F., G. Carvalho, L. Borgo, S. Creste, M.G.A. Landell, P. Mazzafera, and R.A. Azevedo. 2014. Water stress reveals differential antioxidant responses of toleran tand non-tolerant sugarcane genotypes. Plant Physiology Biochemistry 74: 165–175. https://doi.org/10.1016/j.plaphy.2013.11.016.

    Article  CAS  PubMed  Google Scholar 

  • Brady, N.C. 1989. Natureza e propriedades dos solos. 7.ed. SP: Freitas Bastos. 878 pp.

  • Carvalho, A.M., L.L.P. Souza, R. Guimarães Júnior, P.C.A.C. Alves, and L.J. Vivaldi. 2011. Cover plants with potential use for crop livestock integrated systems in the Cerrado region. Pesquisa Agropecuária Brasileira 46: 1200–1205. https://doi.org/10.1590/S0100-204X2011001000012.

    Article  Google Scholar 

  • Carvalho, J.L.N., R.C. Nogueirol, L.M.S. Menandro, R.O. Bordonal, C.D. Borges, H. Cantarella, and H.C.J. Franco. 2017. Agronomic and environmental implications of sugarcane straw removal: A major review. Global Change Biology BioEnergy 9: 1181–1195. https://doi.org/10.1111/gcbb.12410.

    Article  CAS  Google Scholar 

  • Castioni, G.A.F., M.R. Cherubin, R.O. Bordonal, L.C. Barbosa, L.M.S. Menandro, and J.L.N. Carvalho. 2019. Straw removal affects soil physical quality and sugarcane yield in Brazil. BioEnergy Research 12: 789–800. https://doi.org/10.1007/s12155-019-10000-1.

    Article  CAS  Google Scholar 

  • Castioni, G.A.F., M.R. Cherubin, L.M.S. Menandro, G.M. Sanches, R.O. Bordonal, L.C. Barbosa, H.C.J. Franco, and J.L.N. Carvalho. 2018. Soil physical quality response to sugarcane straw removal in Brazil: A multi approach assessment. Soil and Tillage Research 184: 301–309. https://doi.org/10.1016/j.still.2018.08.007Get.

    Article  Google Scholar 

  • Ceballos, C.A., A.J. Fabian, J.C.O. Silva, A.B. Torino, and G.F. Bernardes. 2018. Production and speed of decomposition of species of soil coverage in direct sowing system. Revista Brasileira De Ciência Agrária 61: 1–6. https://doi.org/10.22491/rca.2018.2631.

    Article  Google Scholar 

  • Cepagri: Centro de Pesquisas Meteorológicas e Climáticas aplicadas a Agricultura, 2018. Clima dos municípios Paulistas. Disponível em http://www.cpa.unicamp.br/outras-informacoes/clima_muni_374.html. Acesso em 17 de maio de 2018.

  • Cherubin, M.R., D.L. Karlen, C.E.P. Cerri, A.L.C. Franco, C.A. Tormena, C.A. Davies, and C.C. Cerri. 2016. Soil quality indexing strategies for evaluating sugarcane expansion in Brazil. PLoS ONE 11: e0150860. https://doi.org/10.1371/journal.pone.0150860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherubin, M.R., D.M.S. Oliveira, B.J. Feigl, L.G. Pimentel, I.P. Lisboa, M.R. Gmach, L.L. Varanda, M.C. Morais, L.S. Satiro, G.V. Popin, S.R. Paiva, A.K.B. Santos, A.L.S. Vasconcelos, P.L.A. Melo, C.E.P. Cerri, and C.C. Cerri. 2018. Crop residue harvest for bioenergy production and its implications on soil functioning and plant growth: A review. Scientia Agricola 75: 255–272. https://doi.org/10.1590/1678-992X-2016-0459.

    Article  CAS  Google Scholar 

  • Chi, L., J. Mendonza-Veja, E. Huerta, and D. Álvarez-Solís. 2017. Effect of long-term sugarcane (Saccharum spp.) cultivation on chemical and physical properties of soils in Belize. Communications in Soil Science and Plant Analysis. 48: 741–755. https://doi.org/10.1080/00103624.2016.1254794.

    Article  CAS  Google Scholar 

  • Collier, L.S., E.M. Arruda, L.F.C. Campos, and J.N.V. Nunes. 2018. Soil chemical attributes and corn productivity grown on legume stubble in agroforestry systems. Revista Caatinga. 31: 279–289. https://doi.org/10.1590/1983-21252018v31n203rc.

    Article  Google Scholar 

  • Dexter, A.R. 1988. Advances in characterization of soil structure. Soil and Tillage Research. 11: 199–238. https://doi.org/10.1016/0167-1987(88)90002-5.

    Article  Google Scholar 

  • Dias, C.B., G.C. Rocha, I.R. Assis, and R.B.A. Fernandes. 2016. Intervalo hídrico ótimo e densidade crítica de um Latossolo Amarelo coeso sob diferentes usos no ecossistema Tabuleiro Costeiro. Revista Ceres. 63: 868–878. https://doi.org/10.1590/0034-737X201663060017.

    Article  Google Scholar 

  • Dourado-Neto D., D.R. Nielsen, J.W. Hopmans, K. Reichardt, O.O.S. Bacchi and P.P. Lopes. 2001. Soil Water Retention Curve (SWRC) software. Versão 3.00 beta. Piracicaba: ESALQ/USP.

  • Esteban, D.A.A., Z.M. Souza, C.A. Tormena, L.H. Louvera, E.S. Lima, I.N. Oliveira, and N.P. Ribeiro. 2019. Soil compaction, root system and productivity of sugarcane under different row spacing and control edtraffic atharvest. Soil and Tillage Research 187: 60–71. https://doi.org/10.1016/j.still.2018.11.015.

    Article  Google Scholar 

  • Farhate, C.V.V., Z.M. Souza, M.R. Cherubin, L.H. Lovera, I.N. Oliveira, M.P. Carneiro, and N. La Scala Junior. 2020. Abiotic soil health indicators that respond to sustainable management practices in sugarcane cultivation. Sustainability 12: 9407. https://doi.org/10.3390/su12229407.

    Article  CAS  Google Scholar 

  • Franco, H.C.J., M.T.B. Pimenta, J.L.N. Carvalho, P.S.G. Magalhães, C.E.V. Rossell, O.A. Braunbeck, A.C. Vitti, O.T. Kolln, and J.R. Neto. 2013. Assessment of sugarcane trash for agronomic and energy purposes in Brazil. Scientia Agricola 70: 305–312. https://doi.org/10.1590/S0103-90162013000500004.

    Article  Google Scholar 

  • Franzluebbers, A.J. 2015. Farming strategies to fuel bioenergy demands and facilitate essential soil services. Geoderma 259–260: 251–258. https://doi.org/10.1016/j.geoderma.2015.06.007.

    Article  Google Scholar 

  • Garbiate, M.V., A.C.T. Vitorino, B.A. Tomasini, A.C. Bergamin, and E. Panachuki. 2011. Erosão entre sulcos em área cultivada com cana crua e queimada sob colheita manual e mecanizada. Revista Brasileira De Ciência Do Solo 35: 2145–2155.

    Article  Google Scholar 

  • Gonçalves, W.G., E.C. Severiano, F.G. Silva, K.A.P. Costa, W.S. Guimarães Júnnyor, and G.B. Melo. 2014. Least limiting water range in assessing compaction in a Brazilian Cerrado Latosol growing sugarcane. Revista Brasileira De Ciência Do Solo 38: 432–443. https://doi.org/10.1590/S0100-06832014000200008.

    Article  Google Scholar 

  • Guimarães, R.M.L., C.A. Tormena, E. Blainski, and J. Fidalski. 2013. Intervalo hídrico ótimo para avaliação da degradação física do solo. Revista Brasileira De Ciência Do Solo 37: 1512–1521. https://doi.org/10.1590/S0100-06832013000600008.

    Article  Google Scholar 

  • Iamaguti, J.L., M.R. Moitinho, D.D.B. Teixeira, E.S. Bicalho, A.R. Panosso, and N. La Scala Junior. 2015. Preparo do solo e emissão de CO2, temperatura e umidade do solo em área canavieira. Revista Brasileira Engenharia Agrícola e Ambiental 19: 497–504. https://doi.org/10.1590/1807-1929/agriambi.v19n5p497-504.

    Article  Google Scholar 

  • Jimenez, K.J., M.M. Rolim, R.P. Lima, R.Q. Cavalcante, E.F.F.S. Silva, and E.M.R. Pedrosa. 2020. Soil Physical Indicators of a Sugarcane Field Subjected to Successive Mechanised Harvests. Sugar Tech. 23: 811–818. https://doi.org/10.1007/s12355-020-00916-w.

    Article  CAS  Google Scholar 

  • Keller, T., A.P. Silva, C.A. Tormena, N.F.B. Giarola, K.M.V. Cavalieri, M. Stettler, and J. Arvidsson. 2015. SoilFlex-LLWR: Linking a soil compaction model with the least limiting water range concept. Soil Use and Management 31: 321–329. https://doi.org/10.1111/sum.12175.

    Article  Google Scholar 

  • Klute A. 1986. Water retention: laboratory methods. In: KLUTE, A. (Ed.). Methods of soil analysis: physical and mineralogical properties. Madison: American Society of Agronomy, pp. 635–662.

  • Leão, T.P., A.P. Silva, M.C.M. Macedo, S. Imhoff, and V.P.B. Euclides. 2006. Least limiting water range: A potential indicator of changes innear-surface soil physical quality after the conversion of Brazilian Savanna into pasture. Soil and Tillage Research. 88: 279–285. https://doi.org/10.1016/j.still.2005.06.014.

    Article  Google Scholar 

  • Li, S., X. Wu, G. Liang, L. Gao, B. Wang, J. Lu, A.A. Abdelrhman, X. Song, F. Zhang, and A. Degré. 2020. Is least limiting water range a useful indicator of the impacto f tillage management on maize yield? Soil and Tillage Research. 199: 104602. https://doi.org/10.1016/j.still.2020.104602.

    Article  Google Scholar 

  • Marschner, H. 2012. Mineral nutrition of higher plants, 684. Amsterdam: Elsevier; Academic Press.

    Google Scholar 

  • Menandro, L.M.S., H. Cantarella, H.C.J. Franco, O.T. Kölln, M.T.B. Pimenta, G.M. Sanches, S.C. Rabelo, and J.L.N. Carvalho. 2017. Comprehensive assessment of sugarcane straw: Implications for biomass and bioenergy production. Biofuels, Bioproducts and Biorefining. 11: 488–504. https://doi.org/10.1002/bbb.1760.

    Article  CAS  Google Scholar 

  • Meurer, E. J. Potássio. 2006. In: Fernandes, M. S. (Ed.), Nutrição mineral de plantas. Viçosa, MG, Universidade Federal de Viçosa, pp. 281–298.

  • Mishra, A.K., P. Aggarwal, R.T.K. Bhattacharyya, A.R. Sharna, and R. Singh. 2015. Least limiting water range for two conservation agriculture cropping systems in India. Soil and Tillage Research. 150: 43–56. https://doi.org/10.1016/j.still.2015.01.003.

    Article  Google Scholar 

  • Moraes, E.R., J.G. Mageste, R.M.Q. Lana, J.L.R. Torres, L.A.S. Domingues, and E.M.L.L.C. Lima. 2019. Sugarcane root development and yield under different soil tillage practices. Revista Brasileira De Ciência Do Solo. 43: e0180090. https://doi.org/10.1590/18069657rbcs20180090.

    Article  CAS  Google Scholar 

  • Moreira, F.R., S.C.F.D. Dechen, A.P. Silva, G.C. Figueiredo, I.C. De Maria, and P.T. Pesson. 2014. Intervalo hídrico ótimo em um Latossolo Vermelho cultivado em sistema semeadura direta por 25 anos. Revista Brasileira De Ciência Do Solo. 38: 118–127.

    Article  Google Scholar 

  • Oliveira, I.N., Z.M. Souza, L.H. Louvera, C.V.V. Farhate, E.S. Lima, D.A.A. Esteban, and J.A. Fracarolli. 2019. Least limiting water range as influence by tillage and cover crop. Agricultural Water Management. 225: 105777. https://doi.org/10.1016/j.agwat.2019.105777.

    Article  Google Scholar 

  • Pacheco, L.P., M.M.S. Monteiro, F.A. Petter, J.C.A. Nóbrega, and A.S. Santos. 2017. Biomass and nutrient cycling by cover crops in brazilian cerrado in the state of Piaui. Revista Caatinga 30: 13–23. https://doi.org/10.1590/1983-21252017v30n102rc.

    Article  Google Scholar 

  • Peres, J.G., C.F. Souza, and N.A. Lavorenti. 2010. Avaliação dos efeitos da cobertura de palha de cana-de-açúcar na umidade e na perda de água do solo. Revista Brasileira De Engenharia Agrícola 30: 875–886. https://doi.org/10.1590/S0100-69162010000500010.

    Article  Google Scholar 

  • Pongpat, P., S.H. Gheewala, and T. Silalertrusksa. 2017. An assessment of harvesting practices of sugarcane in the central region of Thailand. Journal of Cleaner Production. 142: 1138–1147. https://doi.org/10.1016/j.jclepro.2016.07.178.

    Article  Google Scholar 

  • Prevedello C. L. and R. A. Armindo. 2015. Física do Solo com Problemas Resolvidos. 2ª Edição Revisada e Ampliada. Curitiba, 474 p.

  • Ramos, N.P., C.S. Yamaguchi, A.M.M. Pires, R. Rossetto, R.A. Possenti, A.P. Packer, O.M.R. Cabral, and C.A. Andrade. 2016. Decomposição de palha de cana-de- açúcar recolhida em diferentes níveis após a colheita mecânica. Pesquisa Agropecuária Brasileira 51: 1492–1500. https://doi.org/10.1590/S0100-204X2016000900048.

    Article  Google Scholar 

  • Sá, M.A.C., J.D.G. Santos Junior, C.A.B. Franz, and T.A. Rein. 2016. Qualidade física do solo e produtividade da cana-de-açúcar com uso da escarificação entre linhas de plantio. Pesquisa Agropecuária Brasileira. 51: 1610–1622. https://doi.org/10.1590/S0100-204X2016000900061.

    Article  Google Scholar 

  • Safadoust, A., P. Feizee, A.A. Mahboubi, B. Gharabaghi, M.R. Mosaddeghi, and B. Ahrens. 2014. Least limiting water range as affected by soil texture and cropping system. Agricultural Water Management. 136: 34–41. https://doi.org/10.1016/j.agwat.2014.01.007.

    Article  Google Scholar 

  • Sandhu, H.S., M.P. Singh, R.A. Gilbert, F. Subiros-Ruiz, R.W. Rice, and J.M. Shine Junior. 2017. Harvest management effects on sugarcane growth, yield and nutrient cycling in Florida and Costa Rica. Field Crops Research. 214: 253–260. https://doi.org/10.1016/j.fcr.2017.09.002.

    Article  Google Scholar 

  • Santana, J.A.S., and J.S. Souto. 2011. Produção de serapilheira na Caatinga da região semi-árida do Rio Grande do Norte, Brasil. Idesia 29: 87–94. https://doi.org/10.4067/S0718-34292011000200011.

    Article  Google Scholar 

  • Santos H. G., P. K. T. Jacomine, L. H. C. Anjos, V. A. Oliveira, F. Lumbreras, M. R. Coelho, J. A. Almeida, J. C. Araujo Filho, J. B. Oliveira and T. J. F. Cunha 2018. Sistema Brasileiro de Classificação de Solos. 5ª Ed. Revista e Ampliada, Brasília: Embrapa, p. 353.

  • Santos, P.F., and W.G. Whilford. 1981. The effects of microarthropods on litter decomposition in a chi-huazhuan ecosystem. Ecological Society of America 62: 54–663. https://doi.org/10.2307/1937733.

    Article  Google Scholar 

  • Satiro, L.S., M.R. Cherubin, J.L. Safanelli, I.P. Lisboa, P.R. Rocha Junior, C.E.P. Cerri, and C.C. Cerri. 2017. Sugarcane straw removal effects on Ultisols and Oxisols in south-central Brazil. Geoderma Regional. 11: 86–95. https://doi.org/10.1016/j.geodrs.2017.10.005.

    Article  Google Scholar 

  • Silva, A.P., B.D. Kay, and E. Perfect. 1994. Characterization of the least limiting water range. Soil Science Society of America Journal. 58: 1775–1781. https://doi.org/10.2136/sssaj1994.03615995005800060028x.

    Article  Google Scholar 

  • Silva, B.M., G.C. Oliveira, M.E. Serafim, É.A. Silva, P.T.G. Guimarães, L.B.B. Melo, L.D. Norton, and N. Curi. 2019. Soil moisture associated with least limiting water range, leaf water potential, initial growth and yield of coffee as affected by soil management system. Soil and Tillage Research. 189: 36–43. https://doi.org/10.1016/j.still.2018.12.016.

    Article  Google Scholar 

  • Silva, G.R.V., Z.M. Souza, F.M.V. Martins, R.S. Barbosa, and G.S. Souza. 2012. Soil, water and nutrient losses by interrill erosion from green cane cultivation. Revista Brasileira De Ciência Do Solo. 36: 963–970. https://doi.org/10.1590/S0100-06832012000300026.

    Article  Google Scholar 

  • Silva, J.R.V., N.V. Costa, and D. Martins. 2003. Efeito da palhada de cultivares de cana-de-açúcar na emergência de cyperus rotundus. Planta Daninha. 21: 375–380. https://doi.org/10.1590/S0100-83582003000300004.

    Article  Google Scholar 

  • Silvarajan, S., M. Maharlooei, S.G. Bajwa, and J. Nowastzki. 2018. Impact of soil compaction due to wheel traffic on corn and soybean growth, development and yield. Soil and Tillage Research. 175: 234–243. https://doi.org/10.1016/j.still.2017.09.001.

    Article  Google Scholar 

  • Souza, G.S., Z.M. Souza, M. Cooper, and C.A. Tormena. 2015. Controlled traffic and soil physical quality of an Oxisol under sugarcane cultivation. Scientia Agricola. 72: 270–277. https://doi.org/10.1590/0103-9016-2014-0078.

    Article  Google Scholar 

  • Taiz, L., and E. Zeiger. 1991. Plant physiology. Redwood City: Benjamin/Cummings Publishing Company.

    Google Scholar 

  • Tedesco, M.J., S.J. Volkweiss, and H. Bohnen. 1985. Análise de solo, plantas e outros materiais. Boletim Técnico de Solos, Porto Alegre. 174 pp.

  • Teixeira P. C., G. K. Donagemma, A. Fontana and W. G. Teixeira. 2017. Manual de métodos de análise de solos. 3ª Edição. Revista e Ampliada, Brasília: Embrapa, p.573.

  • Tormena, C.A., M.A. Araujo, J. Fidalski, and J.M. Costa. 2007. Variação temporal do intervalo hídrico ótimo de um Latossolo Vermelho distroférrico sob sistema de plantio direto. Revista Brasileira De Ciência Do Solo. 31: 211–219. https://doi.org/10.1590/S0100-06832007000200003.

    Article  Google Scholar 

  • Tormena, C.A., D.L. Karlen, S. Logsdon, and M.R. Cherubin. 2017. Corn stover harvestand tillage impacts on near-surface soil physical quality. Soil and Tillage Research 166: 122–130. https://doi.org/10.1016/j.still.2016.09.015.

    Article  Google Scholar 

  • Torres, J.L.R., and M.G. Pereira. 2014. Produção e decomposição de resíduos culturais antecedendo milho e soja num Latossolo no cerrado mineiro. Comunicata Scientiae 4: 419–426. https://doi.org/10.14295/cs.v5i4.508.

    Article  Google Scholar 

  • Torres, J.L.R., M.G. Pereira, M.A. Cunha, M.E. Martins, and D.M.S. Vieira. 2013. Physicochemical properties of soil and biomass in sugarcane harvesting systems. Revista Ciências Agrárias 56: 311–318. https://doi.org/10.4322/rca.2013.047.

    Article  Google Scholar 

  • Torres, J.L.R., M.G. Pereira, A.G.L. Moraes, and S.J. Beutler. 2014. Frações granulométricas e oxidáveis da matéria orgânica em sistemas de colheita de cana-de-açúcar. Revista Caatinga. 27: 16–23.

    Google Scholar 

  • United States Department of Agriculture - USDA. Keys to soil taxonomy. 12th. ed. Washington, DC: USDA-NRCS; 2014.

  • van Genuchten, M.T.A. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal. 44: 892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x.

    Article  Google Scholar 

  • Vischi Filho, O.J., Z.M. Souza, G.S. Souza, A.C.M. Sousa, and R.B. Silva. 2016. Intervalo hídrico ótimo em área de cana-de-açúcar com diferentes ciclos de colheita mecanizada. Irriga 1: 96–108. https://doi.org/10.15809/irriga.2016v1n1p96-108.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Council for Scientific and Technological Development (CNPq—Brazil) (Grant Numbers # 134153/2019-7) and the São Paulo Research Foundation (FAPESP) (Grant Numbers # 2013/02792-1 and # 2018/14958-5) for the financial support given. The authors also acknowledge the Iracema and Zilor mills for providing the study area.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camila Viana Vieira Farhate.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, I.D.C., de Souza, Z.M., Santos, A.P.G. et al. Removal of Different Quantities of Straw on the Soil Surface: Effects on the Physical Attributes of the Soil and the Productivity of Sugarcane Yield in Southeast Brazil. Sugar Tech 24, 1404–1419 (2022). https://doi.org/10.1007/s12355-021-01082-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-021-01082-3

Keywords

Navigation