Skip to main content
Log in

Isolation and Analysis of Reverse Transcriptase of Ty1-copia-Like Retrotransposons in Sugarcane

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

In this study, the reverse transcriptase sequences of Ty1-copia-like retrotransposons were amplified from ROC22 and Badila, and their characteristics, diversity, phylogenetic relationships and transcriptional activity were analyzed. The genomic DNA was amplified by PCR using degenerate primers. The targeted amplified bands in both varieties are all about 260 bp in size. Forty-four and thirty-eight sequences were isolated from ROC22 and Badila, respectively. The length of the former and the latter ranged from 233 to 263 bp and from 233 to 264 bp. The proportion of AT content in the former and in the latter ranged from 45.63 to 62.74% and from 50.58 to 65.40%. The ratio of AT to GC in the former and in the latter ranged from 0.84 to 1.68 and from 1.02 to 1.89. The similarity between nucleotide sequences in the former and in the latter ranged from 47.9 to 98.5% and from 42.3 to 98.8%. According to the cluster analysis, the former was divided into two families, of which family I was divided into five subfamilies. The latter was also divided into two families, of which family I was divided into six subfamilies and family II was divided into three subfamilies. Six of the former and fourteen of the latter had nonsense mutations. The nonsense mutations rate of the latter was much higher than that of the former. The similarity between amino acids in the former and in the latter ranged from 12.9 to 100% and from 42.3 to 98.8%, and the heterogeneity of the latter was lower than that of the former. There were differences in the length of main conserved motifs between the two varieties. The differences of protein structure in the Badila were greater than in the ROC22, and the structure of sequences in the Badila was more complex. The phylogenetic tree showed that all sugarcane reverse transcriptase sequences were divided into six classes. It was found that eleven sugarcane Ty1-copia-like retrotransposons had transcriptional activity. And the transcriptional activity of Ty1-copia-like retrotransposons in the ROC22 was higher than that of Ty1-copia-like retrotransposons in the Badila. The obtained sequences will provide sequences basis for isolating the full-length sequences of Ty1-copia-like retrotransposons, studying their transcriptional transposition activity and function, and laying the foundation for the development of molecular markers in sugarcane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aljanabi, S.M., Y. Parmessur, H. Kross, S. Dhayan, S. Saumtally, K. Ramdoyal, L.J.C. Autrey, and A. Dookun-Saumtally. 2007. Identification of a major quantitative trait locus (QTL) for yellow spot (Mycovellosiella koepkei) disease resistance in sugarcane. Molecular Breeding 19 (1): 1–14.

    Article  Google Scholar 

  • Andru, S., Y.B. Pan, S. Thongthawee, D.M. Burner, and C.A. Kimbeng. 2011. Genetic analysis of the sugarcane (Saccharum spp.) cultivar ‘LCP 85–384’. I. Linkage mapping using AFLP, SSR, and TRAP markers. Theoretical and Applied Genetics 123: 77–93.

    Article  PubMed  Google Scholar 

  • Bennetzen, J.L., and H. Wang. 2014. The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annual Review of Plant Biology 65: 505–530.

    Article  CAS  PubMed  Google Scholar 

  • Bonchev, G., and C. Parisod. 2013. Transposable elements and microevolutionary changes in natural populations. Molecular Ecology Resources 13 (5): 765–775.

    Article  CAS  PubMed  Google Scholar 

  • Costet, L., L. Le Cunff, S. Royaert, L.M. Raboin, C. Hervouet, L. Toubi, H. Telismart, O. Garsmeur, Y. Rousselle, J. Pauquet, S. Nibouche, J.C. Glaszmann, J.Y. Hoarau, and A. D’Hont. 2012. Haplotype structure around Bru1 reveals a narrow genetic basis for brown rust resistance in modern sugarcane cultivars. Theoretical and Applied Genetics 125 (5): 825–836.

    Article  CAS  PubMed  Google Scholar 

  • De Araujo Paula, G., M. Rossi, E.M. de Jesus Jr, N.L. Saccaro, D. Kajihara, R. Massa, J.M. de Felix, R.D. Drummond, M.C. Falco, S.M. Chabregas, E.C. Ulian, M. Menossi, and M.A. Van Sluys. 2005. Transcriptionally active transposable elements in recent hybrid sugarcane. The Plant Journal 44 (5): 707–7171.

    Article  PubMed  CAS  Google Scholar 

  • De Jesus, E.M., E.A. Ochoa Cruz, G.M.Q. Cruz, and M.A. Van Sluys. 2012. Diversification of hAT transposase paralogues in the sugarcane genome. Molecular Genetics and Genomics 287 (3): 205–219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diao, X.M., M. Freeling, and D. Lish. 2006. Horizontal transfer of a plant transposon. PLoS Biology 4 (1): 120–128.

    Google Scholar 

  • Doolittle, R.F., D.F. Feng, M.S. Johnson, and M.A. McClure. 1989. Origins and evolutionary relationships of retroviruses. Quarterly Review of Biology 64 (1): 1–30.

    Article  CAS  PubMed  Google Scholar 

  • Feschotte, C., N. Jiang, and S.R. Wessler. 2002. Plant transposable elements: Where genetics meets genomics. Nature Reviews Genetics 3 (5): 329–341.

    Article  CAS  PubMed  Google Scholar 

  • Flavell, A.J., M.R. Knox, S.R. Pearce, and T.H.N. Ellis. 1998. Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. The Plant Journal 16 (5): 643–650.

    Article  CAS  PubMed  Google Scholar 

  • Gabriel, A., M. Willems, E.H. Mules, and J.D. Boeke. 1996. Replication infidelity during a single cycle of Ty1 retrotransposition. Proceedings of the National Academy of Sciences of the United States of America 93 (15): 7767–7771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glynn, N.C., C. Laborde, R.W. Davidson, M.S. Irey, B. Glaz, A. D’Hont, and J.C. Comstock. 2013. Utilization of a major brown rust resistance gene in sugarcane breeding. Molecular Breeding 31 (2): 323–331.

    Article  CAS  Google Scholar 

  • Heslop-Harrison, J.S., A. Brandes, S. Taketa, T. Schmidt, A.V. Vershinin, E.G. Alkimova, A. Kamm, R.L. Doudrick, T. Schwarzacher, A. Katsiotis, S. Kubis, A. Kumar, S.R. Pearch, A.J. Flavell, and G.E. Harrison. 1997. The chromosomal distributions of Ty1-copia group retrotransposable elements in higher plants and their implication for genome evolution. Genetica 100: 197–204.

    Article  CAS  PubMed  Google Scholar 

  • Huang, D.L., Y.J. Gao, Y.Y. Gui, Z.L. Chen, C.X. Qin, M. Wang, Q. Liao, L.T. Yang, and Y.R. Li. 2016. Transcriptome of high-sucrose sugarcane variety GT35. Sugar Tech 18 (5): 520–528.

    Article  Google Scholar 

  • Kalendar, R., T. Grob, M. Regina, A. Suoniemi, and A. Schulman. 1999. IRAP and REMAP: Two new retrotransposon-based DNA fingerprinting techniques. Theoretical and Applied Genetics 98 (5): 704–711.

    Article  CAS  Google Scholar 

  • Kumar, A. 1998. The evolution of plant retroviruses: Moving to green pastures. Plant Science 3 (10): 371–374.

    Article  Google Scholar 

  • Kumar, A., and J.L. Bennetzen. 1999. Plant retrotransposons. Annual Review of GenEtics 33: 479–532.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, A., S.R. Pearce, K. McLean, G. Harrison, J.S. Heslop-Harrison, R. Waugh, and A.J. Flavell. 1997. The Tyl-copia group of retrotransposons in plants: Genomic organisation, evolution and use as molecular markers. Genetica 100: 205–217.

    Article  CAS  PubMed  Google Scholar 

  • Kumekawa, N., E. Ohtsubo, and H. Ohtsubo. 1999. Identification and phylogenetic analysis of gypsy-type retrotransposons in the plant kingdom. Genes & Genetic Systems 74 (6): 299–307.

    Article  CAS  Google Scholar 

  • Li, W.F., X.Y. Wang, Y.K. Huang, R.Y. Zhang, H.L. Shan, J. Yin, and Z.M. Luo. 2017. Molecular detection of Bru1 gene and identification of brown rust resistance in Chinese sugarcane germplasm. Sugar Tech 19 (2): 183–190.

    Article  CAS  Google Scholar 

  • Liao, S.T., W. Xian, H. Zhou, Q. Liang, Y.Y. Gui, and R.Z. Yang. 2012. Assessment of cold tolerance in different sugarcane varieties using SRAP markers. Southwest China Journal of Agricultural Sciences 25 (4): 1171–1176.

    Google Scholar 

  • Liu, J.X., F.Q. Xiong, J. Liu, L. Luo, L.H. Qiu, L.M. Liu, J.M. Wu, H.J. Liu, X. Liu, M.M. Lu, Y.B. He, and S. Li. 2019. High quality sugarcane DNA extraction methods for cloning and molecular marker analysis. Molecular Plant Breeding 17 (2): 545–552.

    Google Scholar 

  • Liu, X.L., J. Mao, X. Lu, L. Ma, K.S. Aitken, P.A. Jackson, Q. Cai, and Y.H. Fan. 2010. Construction of molecular genetic linkage map of sugarcane based on SSR and AFLP markers. Acta Agronomica Sinica 36 (1): 177–183.

    Article  CAS  Google Scholar 

  • Liu, X.L., X.J. Li, H.B. Liu, L. Ma, C.H. Xu, and Y.H. Fan. 2015. Genetic diversity analysis of Yunnan commonly-used parents by using SSR marker. Journal of Plant Genetic Resources 16 (6): 1214–1222.

    CAS  Google Scholar 

  • Nakayama, S. 2012. Inter-MITE polymorphisms of a newly identified MITE show relationships among sugarcane (Saccharum) species. Genetic Resources and Crop Evolution 59 (7): 1389–1396.

    Article  CAS  Google Scholar 

  • Neuber, A.C., F.R.C. Santos, J.B. Costa, M. Volpin, M.A. Xavier, D. Perecin, R.C.V. Burbano, M.G.A. Landell, and L.R. Pinto. 2017. Survey of the Bru1 gene for brown rust resistance in Brazilian local and basic sugarcane germplasm. Plant Breeding 136 (2): 182–187.

    Article  CAS  Google Scholar 

  • Ostertag, E.M., B.B. Madison, and H. Kano. 2007. Mutagenesis in rodents using the LI retrotransposon. Genome Biology 8 (S1): S16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Parco, A.S., M.C. Avellaneda, A.H. Hale, J.W. Hoy, C.A. Kimbeng, M.J. Pontif, K.A. Gravois, and N. Baisakh. 2014. Frequency and distribution of the brown rust resistance gene Bru1 and implications for the Louisiana sugarcane breeding programme. Plant Breeding 133 (5): 654–659.

    Article  CAS  Google Scholar 

  • Que, Y.X., Y.B. Pan, Y.H. Lu, C. Yang, Y.T. Yang, N. Huang, and L.P. Xu. 2014. Genetic analysis of diversity within a Chinese local sugarcane germplasm based on start codon targeted polymorphism. BioMed Research International 2014: 1–10.

    Article  Google Scholar 

  • Racedo, J., M.F. Perera, R. Bertani, C. Funes, V. González, M.I. Cuenya, A. D’Hont, B. Welin, and A.P. Castagnaro. 2013. Bru1 gene and potential alternative sources of resistance to sugarcane brown rust disease. Euphytica 191 (3): 429–436.

    Article  CAS  Google Scholar 

  • Raza, S., S. Anjum, S. Qamarunisa, I. Jamil, A. Azhar, and J.A. Qureshi. 2011. Genome analysis of sugarcane (cultivar BL4) to investigate transposable elements. Pakistan Journal of Biochemistry and Molecular Biology 44 (2): 68–72.

    Google Scholar 

  • Rossi, M., P.G. Araujo, E.M. de Jesus, A.M. Varani, and M.A. Van Sluys. 2004. Comparative analysis of Mutator-like transposases in sugarcane. Molecular Genetics and Genomics 272 (2): 194–203.

    Article  CAS  PubMed  Google Scholar 

  • Rossi, M., P.G. Araujo, and M.A. Van Sluys. 2001. Survey of transposable elements in sugarcane expressed sequence tags (ESTs). Genetics and Molecular Biology 24 (1–4): 147–154.

    Article  CAS  Google Scholar 

  • Song, Y., D. Ji, S. Li, P. Wang, Q. Li, and F. Xiang. 2012. The dynamic changes of DNA methylation and histone modifications of salt responsive transcription factor genes in soybean. PLoS ONE 7 (7): e41274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinhauer, D.A., and J.J. Holland. 1986. Direct method for quantitation of extreme polymerase error frequencies at selected single base sites in viral RNA. Journal of Virology 57 (1): 219–228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, Y.M., Y.Z. Ma, L.C. Li, and X.G. Ye. 2005. Identification and characterization of reverse transcriptase domain of transcriptionally active retrotransposons in wheat genomes. Journal of Integrative Plant Biology 47 (5): 604–612.

    Article  CAS  Google Scholar 

  • Voytas, D.F., M.P. Cummings, A. Konieczny, F.M. Ausubel, and S.R. Rodermel. 1992. Copia-like retrotransposons are ubiquitous among plants. Proceedings of the National Academy of Sciences of the United States of America 89 (15): 7124–7128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., N.S. Zhuang, D.Y. Huang, H.Q. Gao, and W.Q. Wu. 2009. Sequence characterized amplified region (SCAR) translation analysis of the RAPD markers in sugarcane parental germplasm. Journal of Agricultural Biotechnology 17 (4): 713–121.

    CAS  Google Scholar 

  • Waugh, R., K. McLean, A.J. Flavell, S.R. Pearce, A. Kumar, B.B.T. Thomas, and W. Powell. 1997. Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Molecular and General Genetics 253 (6): 687–694.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Z.Y., S. Yang, W. Qian, J.Y. Wu, K. Chen, K. Zhang, P.T. Li, and Z.H. Deng. 2020. Cloning and characterisation of reverse transcriptase sequences of Ty1-copia retrotransposon in Saccharum robustum. Journal of Plant Genetic Resources 21 (2): 466–476.

    Google Scholar 

  • Yu, A.L., M.Q. Zhang, and R.K. Chen. 2002. Applicability of inter-simple sequence repeat polymorphisms in sugarcane and its related genera as DNA markers. Journal of Fujian Agriculture and Forestry University (natural Science Edition) 31 (4): 484–489.

    Google Scholar 

  • Zhang, J.S., A. Sharma, Q.Y. Yu, J.P. Wang, L.T. Li, L. Zhu, X.T. Zhang, Y.Q. Chen, and R. Ming. 2016. Comparative structural analysis of Bru1 region homeologs in Saccharum spontaneum and S. officinarum. BMC Genomics 17: 446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, J.S., X.T. Zhang, H.B. Tang, et al. 2018. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nature Genetics 50 (11): 1565–1573.

    Article  CAS  PubMed  Google Scholar 

  • Zan, F.G., X.M. Ying, C.W. Wu, P.F. Zhao, X.K. Chen, L. Ma, H.S. Su, and J.Y. Liu. 2015. Genetic diversity analysis of 98 collections of sugarcane germplasm with AFLP markers. Scientia Agricultura Sinica 48 (5): 1002–1010.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financed by the National Natural Science Foundation of China (31960416; 31960409; 31660428; 81860678), Guangxi Natural Science Foundation Program (2018GXNSFDA294004; 2018GXNSFDA281027; 2020GXNSFAA297081) and Guangxi Academy of Agricultural Sciences Fund Project (GNK31960416; GNK31960409; GNK2017JZ13; GNK2018YM06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong-Chang Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JX., Liu, J., Yang, TY. et al. Isolation and Analysis of Reverse Transcriptase of Ty1-copia-Like Retrotransposons in Sugarcane. Sugar Tech 24, 1510–1529 (2022). https://doi.org/10.1007/s12355-021-01063-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-021-01063-6

Keywords

Navigation