Influence of Harvester and Rotation of the Primary Extractor Speed in the Agroindustrial Performance of Sugarcane

Abstract

This study aimed to evaluate the amount of vegetable and mineral impurities, and the industrial quality standards of the sugarcane, under different harvester speeds and rotations of the primary extractor, in the first cut from a sugarcane field in a terrain with 7% declivity. The experiment took place in the city of Pacaembu, in the western region of the State of São Paulo, Brazil. The space between plant rows was 1.4 m, and the field had an estimated productivity of 75 t ha−1 and low weed incidence. The sugarcane variety planted was RB96-5902, and the treatments were the combination of two harvester speeds (3 and 6 km h−1) and two primary extractor rotation speeds (700 and 1200 rpm). Besides, the standard speed of 5 km h−1 and 950 rpm, commonly used by the industry, was used as control treatment, which made a total of 5 different treatments analyzed. The response variables studied were vegetable impurities (IV, %), mineral impurities (IM, %), total impurities (IT, %), fiber (%), brix, pol (%), corrected sugarcane pol (PCC, %), apparent juice purity (PZA, %), reducing sugars (AR, %) and total recoverable sugars. According to the results obtained, the factor, which presented major influence over the level of impurities and the technological characteristics of the raw matter, was the rotation speed of the primary extractor. In this scenario, the highest rotations decreased the impurity levels and improved the industrial qualities. Considering the treatments applied, the most efficient rotation speed was at 1200 rpm.

This is a preview of subscription content, access via your institution.

References

  1. Antunes, F.F., A.A.K. Chandel, H. Brumano, T. Larissa, R. Hilares, P. Ruly, F.D. Guilherme, L.E.S. Ayabe, V.S. Sorato, J.R. Santos, J.C. Santos, and S.S. Silvio. 2017. A novel process intensification strategy for second-generation ethanol production from sugarcane bagasse in fluidized bed reactor. Renewable Energy 124(1): 1–8. https://doi.org/10.1016/j.renene.2017.06.004.

    CAS  Article  Google Scholar 

  2. Benedini, M.S., F.P.R. Brod, and J.G. Perticarrari. 2009. Perdas e impurezas vegetais e minerais na colheita mecanizada. Guariba: Centro de Tecnologia Canavieira–CTC.

    Google Scholar 

  3. Bovi, R., and E.G. Serra. 1999. Impurezas fibrosas da cana-de-açúcar e parâmetros tecnológicos do caldo extraído. Scientia Agricola 56(4): 885–896. https://doi.org/10.1590/S0103-90161999000400016.

    Article  Google Scholar 

  4. Carneiro, M.S., J.R.B.F. Rosa, F.Z. Barreto, T.W.A. Balsalobre, R.G. Chapola, M.A.S. Vieira, A.I. Bassinello, and H.P. Hoffmann. 2011. RB965902 and RB965917 Early/medium maturing sugarcane varieties. Crop Breeding and Applied Biotechnology 11(3): 280–285. https://doi.org/10.1590/S1984-70332011000300012.

    Article  Google Scholar 

  5. CONAB - Companhia Nacional de Abastecimento. 2020. Acompanhamento da Safra Brasileira: cana-de-açúcar – Safra 2020/21. First survey, 5: 1–62. https://www.conab.gov.br/info-agro/safras/cana. Accessed July 14, 2020.

  6. CONSECANA- Conselho dos Produtores de Cana-de-açúcar, Açúcar, Álcool do Estado de São Paulo. 2006. Manual de instruções. Piracicaba: Consecana

  7. COPERSUCAR. 1980. Análises tecnológicas do caldo. Piracicaba: Copersucar.

    Google Scholar 

  8. Fernandes, A.C. 2011. Cálculos na Agroindústria da cana de açúcar. Piracicaba: STAB: Açúcar, Álcool e Subprodutos.

  9. Fredo, C.E. and D.V. Caser. 2017. Mecanização da Colheita da Cana-de-açúcar Atinge 90% na Safra 2016/17. Análises e Indicadores do Agronegócio 3(3): 1–6. http://www.iea.sp.gov.br/ftpiea/AIA/AIA-35-2017

  10. Ivin, P.C., and C.D. Doyle. 1989. Some measurements of the effect of tops and trash on cane quality. Proceedings of the Australian Society of Sugar Cane Technologists 11: 1–7.

    Google Scholar 

  11. Lopes, C.H. 2011. Tecnologia de produção de açúcar de cana. São Carlos: EdUFSCAR.

    Google Scholar 

  12. Neves, J.L.M., P.S.G. Magalhães, and W.M. Ota. 2004. Sistema de monitoramento de perdas visíveis de cana-de-açúcar em colhedora de cana picada. Engenharia Agrícola 24(3): 764–770. https://doi.org/10.1590/S0100-69162004000300030.

    Article  Google Scholar 

  13. Neves, J.L.M., P.S.G. Magalhães, E.E. Moraes, and F.V.M. Araújo. 2006. Avaliação de perdas invisíveis na colheita mecanizada em dois fluxos de massa de cana-de-açúcar. Engenharia Agrícola 26(3): 787–794. https://doi.org/10.1590/S0100-69162006000300016.

    Article  Google Scholar 

  14. Rodrigues, E.B., and O.J.G.A. Saab. 2007. Avaliação técnico-econômica da colheita manual e mecanizada da cana-de-açúcar (Saccharum spp) na região de Bandeirantes–Pr. Semina Ciências Agrárias 28(4): 581–588.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Rio Vermelho Mill (Glencane Bioenergia S/A) for operational support for the work development.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Murilo Fuentes Pelloso.

Ethics declarations

Conflict of interest

Author Murilo Fuentes PELLOSO declares that he has no conflict of interest. Author Bruno Fuentes PELLOSO is an employee from Company Rio Vermelho Mill. Author Adriano Aparecido de LIMA was an employee from Company Rio Vermelho Mill when the study was carried out (2014). Author Alex Henrique Tiene ORTIZ declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pelloso, M.F., Pelloso, B.F., de Lima, A.A. et al. Influence of Harvester and Rotation of the Primary Extractor Speed in the Agroindustrial Performance of Sugarcane. Sugar Tech (2021). https://doi.org/10.1007/s12355-020-00944-6

Download citation

Keywords

  • Mechanical harvest
  • Mineral impurities
  • Raw sugarcane
  • Saccharum species hybrids
  • Vegetable impurities