Skip to main content
Log in

Preliminary Structural Analysis of High Molecular Weight Alkaline Degradation Products of Sucrose

  • Short Communication
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

The high molecular weight alkaline degradation products of sucrose (HMWADPS) are the colored substances in sugar juice. Few studies have been conducted to elucidate the structure of HMWADPS. In the present study, the structure of HMWADPS was analyzed by nuclear magnetic resonance and Fourier transform infrared spectroscopy, and the molecular weight of HMWADPS was determined by gel permeation chromatography. The chemical structure of HMWADPS consisted of carbonyl carbon (ketones, aldehyde, and carboxyl), conjugated double bonds, alcoholic hydroxyl, and saturated alkanes. The molecular weight of HMWADPS was calculated to be predominately composed by 19525 and 2357 Da, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Andrews, L.S., M.A. Godshall, and S. Moore. 2006. Sucrose degradation under model processing conditions. Journal of Food Science 67 (5): 1621–1624.

    Article  Google Scholar 

  • Coca, M., M.T. García, G. González, M. Peña, and J.A. García. 2004. Study of coloured components formed in sugar beet processing. Food Chemistry 86: 421–433.

    Article  CAS  Google Scholar 

  • Davídek, T., F. Robert, S. Devaud, F.A. Vera, and I. Blank. 2006. Sugar fragmentation in the maillard reaction cascade: formation of short-chain carboxylic acids by a new oxidative α-dicarbonyl cleavage pathway. Journal of Agricultural and Food Chemistry 54 (18): 6677–6684.

    Article  Google Scholar 

  • Eggleston, G., and J.R. Vercellotti. 2000. Degradation of sucrose, glucose and fructose in concentrated aqueous solutions under constant ph conditions at elevated temperature. Journal of Carbohydrate Chemistry 19 (9): 1305–1318.

    Article  CAS  Google Scholar 

  • Gomez-Serrano, V., J. Pastor-Villegas, A. Perez-Florindo, C. Duran-Valle, and C. Valenzuela-Calahorro. 1996. FT-IR study of rockrose and of char and activated carbon. Journal of Analytical and Applied Pyrolysis 36 (1): 71–80.

    Article  CAS  Google Scholar 

  • Herzfeld, J., D. Rand, Y. Matsuki, E. Daviso, M. Mak-Jurkauskas, and I. Mamajanov. 2011. Molecular structure of humin and melanoidin via solid state NMR. Journal of Physical Chemistry B 115 (19): 5741–5745.

    Article  CAS  Google Scholar 

  • Iqbal, M., M.A. Oamar, T.H. Bokhari, M. Abbas, F. Hussain, N. Masood, A. Keshavarzi, N. Qureshi, and A. Nazir. 2017. Total phenolic, chromium contents and antioxidant activity of raw and processed sugars. Information Processing in Agriculture 4 (1): 83–89.

    Article  Google Scholar 

  • Kato, H., M. Mizushima, T. Kurata, and M. Fujimaki. 1973. The formation of alkyl-p-benzoquinones and catechols through base-catalyzed degradation of sucrose. Agricultural and Biological Chemistry 37 (11): 2677–2678.

    Article  CAS  Google Scholar 

  • Kaushik, A., S. Basu, V.S. Batra, and M. Balakrishnan. 2018. Fractionation of sugarcane molasses distillery wastewater and evaluation of antioxidant and antimicrobial characteristics. Industrial Crops and Products 118: 73–80.

    Article  CAS  Google Scholar 

  • Lee, S.H., S.J. Jeong, G.Y. Jang, M.Y. Kim, I.G. Hwang, H.Y. Kim, K.S. Woo, B.Y. Hwang, J. Song, J. Lee, and H.S. Jeong. 2016. Isolation and identification of an antiproliferative compound from fructose-tryptophan maillard reaction products. Journal of Agricultural and Food Chemistry 64: 3041–3047.

    Article  CAS  Google Scholar 

  • Manley-Harris, M., W. Moody, and G.N. Richards. 1980. Mechanisms of alkaline degradation of sucrose. Relative rates of alkaline degradation of some sucrose derivatives. Australian Journal of Chemistry 33 (5): 1041–1047.

    Article  CAS  Google Scholar 

  • Mohsin, G.F., F.J. Schmitt, C. Kanzler, J.D. Epping, S. Flemig, and A. Hornemann. 2018. Structural characterization of melanoidin formed from d-glucose and l-alanine at different temperatures applying FTIR, NMR, EPR, and MALDI-ToF-MS. Food Chemistry 245: 761–767.

    Article  CAS  Google Scholar 

  • O’Donnell, G.W., and G.N. Richards. 1973. Mechanism of alkaline degradation of sucrose. A study of some model compounds. Australian Journal of Chemistry 26 (9): 2041–2049.

    Article  Google Scholar 

  • Sartori, J.A., C.F.F. Angolini, M.N. Eberlin, and C.L. Aguiar. 2019. Reactions involved in phenolics degradation from sugarcane juice treated by ozone. Ozone Science and Engineering 41 (4): 369–375.

    Article  CAS  Google Scholar 

  • Sengar, G., and H.K. Sharma. 2014. Food caramels: a review. Journal of Food Science and Technology 51 (9): 1686–1696.

    Article  CAS  Google Scholar 

  • Shi, C., D.W. Rackemann, L. Moghaddam, B. Wei, K. Li, H. Lu, C. Xie, F. Hang, and W.O. Doherty. 2019. Ceramic membrane filtration of factory sugarcane juice: effect of pretreatment on permeate flux, juice quality and fouling. Journal of Food Engineering 243: 101–113.

    Article  CAS  Google Scholar 

  • Thomas, P.S., J.P. Guerbois, G.F. Russell, and B.J. Briscoe. 2001. FTIR study of the thermal degradation of poly (vinyl alcohol). Journal of Thermal Analysis and Calorimetry 64 (2): 501–508.

    Article  CAS  Google Scholar 

  • Wang, H., J. Wang, C. Qiu, Y. Ye, X. Guo, G. Chen, T. Li, Y. Wang, X. Fu, and R.H. Liu. 2017. Comparison of phytochemical profiles and health benefits in fiber and oil flaxseeds (linum usitatissimum l.). Food Chemistry 214: 227–233.

    Article  CAS  Google Scholar 

  • Wei, F., K. Furihata, F. Hu, T. Miyakawa, and M. Tanokura. 2011. Two-dimensional 1H–13C nuclear magnetic resonance (NMR)-based comprehensive analysis of roasted coffee bean extract. Journal of Agricultural and Food Chemistry 59 (17): 9065–9073.

    Article  CAS  Google Scholar 

  • Yang, B.Y., and R. Montgomery. 2007. Alkaline degradation of invert sugar from molasses. Bioresource Technology 98 (16): 3084–3089.

    Article  CAS  Google Scholar 

  • Zhang, X., M.D. Do, P. Casey, A. Sulistio, G.G. Qiao, L. Lundin, P. Lillford, and S. Kosaraju. 2010. Chemical cross-linking gelatin with natural phenolic compounds as studied by high-resolution nmr spectroscopy. Biomacromolecules 11 (4): 1125–1132.

    Article  CAS  Google Scholar 

Download references

Funding

The work is not supported by funds. This study was funded by the Research Program of Science and Technology of Guangxi Zhuang Autonomous (Grant number: AA17204092), and the Research Program of Sugar Industry Technology System of China (Grant number: CARS-170502).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Li or Wen Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Li, K. & Li, W. Preliminary Structural Analysis of High Molecular Weight Alkaline Degradation Products of Sucrose. Sugar Tech 23, 461–465 (2021). https://doi.org/10.1007/s12355-020-00902-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-020-00902-2

Keywords

Navigation