Skip to main content
Log in

Temporal Expression Pattern of Bolting-Related Genes During Vernalization in Sugar Beet

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

To screen candidate marker genes implicated in vernalization, bolting-related agronomic traits and the expression of genes homologous to the bolting and flowering-related genes in Arabidopsis thaliana were investigated in KWS9147 during 16-week (w) chilling. Bolting-related agronomic traits showed that less than 10-w chilling was not sufficient for bolting. A transitional period was determined between 10 and 14 weeks when vernalization time was enough for bolting in some seedlings. After 14-w chilling, nearly all seedlings were well vernalized. At the transcriptional level, the expression of 19 candidate genes was significantly changed in response to chilling (change fold > 2 and P value < 0.05). In particular, three genes (BvGI, BvBTC1 and BvFVE1) were notable, as their expression continuously increased or decreased during 8–16-w chilling, when BI and BD were significantly changed. On the basis of correlation analysis, a co-expression network containing two modules was constructed. BvGI, BvBTC1 and BvFVE1 were located at the centre of the first module, which co-expressed with the other 3 photoperiodic genes. In the second module, BvFT1 and BvFT2 were associated with BvLHY, BvGATA22 and BvFVE2. Our study on the temporal expression pattern of bolting and flowering-related genes during vernalization provides valuable information for preliminary screening of key regulators and may facilitate the future molecular breeding of vernalization-insensitive varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Material

Not applicable.

References

  • Abe, Jun, G.P. Guan, and Y. Shimamoto. 1997. A gene complex for annual habit in sugar beet (Beta vulgaris L.). Euphytica 94 (2): 129–135.

    Google Scholar 

  • Abou-Elwafa, S.F., B. Büttner, T. Chia, G. Schulze-Buxloh, U. Hohmann, E. Mutasa-Göttgens, C. Jung, and A.E. Muller. 2011. Conservation and divergence of autonomous pathway genes in the flowering regulatory network of Beta vulgaris. Journal of Experimental Botany 62 (10): 3359–3374.

    CAS  PubMed  Google Scholar 

  • Amasino, R. 2010. Seasonal and developmental timing of flowering. Plant Journal 61 (6): 1001–1013.

    CAS  Google Scholar 

  • Ausín, I., C. Alonso-Blanco, J.A. Jarillo, L. Ruiz-García, and J. Martínez-Zapater. 2004. Regulation of flowering time by FVE, a retinoblastoma-associated protein. Nature Genetics 36 (2): 162–166.

    PubMed  Google Scholar 

  • Biancardi, E. 2005. Genetics and breeding of sugar beet. Boca Raton: CRC Press.

    Google Scholar 

  • Chia, T.Y.P., A. Müller, C. Jung, and E.S. Mutasa-Gcettgens. 2008. Sugar beet contains a large CONSTANS-LIKE gene family including a CO homologue that is independent of the early-bolting (B) gene locus. Journal of Experimental Botany 59 (10): 2735–2748.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chow, B.Y., A. Helfer, D.A. Nusinow, and S.A. Kay. 2012. ELF3 recruitment to the PRR9 promoter requires other Evening Complex members in the Arabidopsis circadian clock. Plant Signaling & Behavior 7 (2): 170–173.

    CAS  Google Scholar 

  • Dai, S., X. Wei, L. Pei, R.L. Thompson, Y. Liu, J.E. Heard, T.G. Ruff, and R.N. Beachy. 2011. BROTHER OF LUX ARRHYTHMO is a component of the Arabidopsis circadian clock. Plant Cell 23 (3): 961–972.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dally, N., K. Xiao, D. Holtgräwe, and C. Jung. 2014. The B2 flowering time locus of beet encodes a zinc finger transcription factor. Proceedings of the National Academy of Sciences of the United States of America 111 (28): 10365–10370.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ginestet, C. 2011. ggplot2: elegant graphics for data analysis. Journal of the Royal Statistical Society: Series A (Statistics in Society) 174 (1): 245–246.

    Google Scholar 

  • Goodstein, D.M., S. Shu, R. Howson, R. Neupane, R.D. Hayes, J. Fazo, T. Mitros, W. Dirks, U. Hellsten, N. Putnam, and D.S. Rokhsar. 2012. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Research 40 (Database issue): D1178–D1186.

    CAS  PubMed  Google Scholar 

  • Hayama, R., S. Yokoi, S. Tamaki, M. Yano, and K. Shimamoto. 2003. Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422 (6933): 719–722.

    CAS  PubMed  Google Scholar 

  • He, Z., H. Zhang, S. Gao, M.J. Lercher, W.H. Chen, and S. Hu. 2016. Evolview v2: an online visualization and management tool for customized and annotated phylogenetic trees. Nucleic Acids Research 44 (Web Server issue): W236–W241.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hecht, V., F. Foucher, C. Ferrandiz, R. Macknight, C. Navarro, J. Morin, M.E. Vardy, N. Ellis, J.P. Beltran, C. Rameau, and J.L. Weller. 2005. Conservation of Arabidopsis flowering genes in model Legumes. Plant Physiology 137 (4): 1420–1434.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann, C.M., and S. Kluge-Severin. 2010. Light absorption and radiation use efficiency of autumn and spring sown sugar beets. Field Crops Research 119 (2): 238–244.

    Google Scholar 

  • Hong, S.Y., S. Lee, P.J. Seo, M.S. Yang, and C.M. Park. 2010. Identification and molecular characterization of a Brachypodium distachyon GIGANTEA gene: functional conservation in monocot and dicot plants. Plant Molecular Biology 72 (4–5): 485–497.

    CAS  PubMed  Google Scholar 

  • Johnson, L.S., S.R. Eddy, and E. Portugaly. 2010. Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinformatics 11 (1): 431.

    PubMed  PubMed Central  Google Scholar 

  • Jung, C., and A.E. Müller. 2009. Flowering time control and applications in plant breeding. Trends in Plant Science 14 (10): 563–573.

    CAS  PubMed  Google Scholar 

  • Kalyaanamoorthy, S., B.Q. Minh, T.K.F. Wong, A.V. Haeseler, and L.S. Jermiin. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14 (6): 587–589.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kassambara, A. and F. Mundt. 2016. Factoextra: extract and visualize the results of multivariate data analyses. R package version 1 (3):2016.

  • Kim, D., and S. Sung. 2014. Genetic and epigenetic mechanisms underlying vernalization. The Arabidopsis Book/American Society of Plant Biologists 12: e0171.

    PubMed Central  Google Scholar 

  • Kim, H.J., Y. Hyun, J. Park, M. Park, M. Park, M.D. Kim, H. Kim, M.H. Lee, J. Moon, I. Lee, and J. Kim. 2004. A genetic link between cold responses and flowering time through FVE in Arabidopsis thaliana. Nature Genetics 36 (2): 167–171.

    CAS  PubMed  Google Scholar 

  • Kim, W.Y., S. Fujiwara, S. Suh, J. Kim, Y. Kim, L.Q. Han, K. David, J. Putterill, H.G. Nam, and D.E. Somers. 2007. ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449 (7160): 356–360.

    CAS  PubMed  Google Scholar 

  • Kohl, M., S. Wiese, and B. Warscheid. 2011. Cytoscape: software for bisualization and analysis of biological networks. Methods in Molecular Biology 696: 291–303.

    CAS  PubMed  Google Scholar 

  • Kumar, S., G. Stecher, M. Li, C. Knyaz, and K. Tamura. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35 (6): 1547–1549.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lê, S., J. Josse, and F. Husson. 2008. FactoMineR: an R package for multivariate analysis. Journal of Statistical Software 25 (1): 1–18.

    Google Scholar 

  • Li, W.B., T. Wang, Y.H. Zhang, and Y.G. Li. 2015. Overexpression of soybean miR172c confers tolerance to water deficit and salt stress, but increases ABA sensitivity in transgenic Arabidopsis thaliana. Journal of Experimental Botany 67 (1): 175–194.

    PubMed  Google Scholar 

  • Madeira, F., Y.M. Park, J. Lee, N. Buso, T. Gur, N. Madhusoodanan, P. Basutkar, A.R.N. Tivey, S.C. Potter, and R.D. Finn. 2019. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research 47 (W1): W636–W641.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Milford, G.F.J. 2006. Plant structure and crop physiology. Oxford: Blackwell Publishing Ltd.

    Google Scholar 

  • Nguyen, L.T., H.A. Schmidt, A. Von Haeseler, and B.Q. Minh. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32 (1): 268–274.

    CAS  PubMed  Google Scholar 

  • Pfeiffer, N., A.E. Müller, C. Jung, and F.J. Kopisch-Obuch. 2017. QTL for delayed bolting after winter detected in leaf beet (Beta vulgaris L.). Plant Breeding 136 (2): 237–244.

    CAS  Google Scholar 

  • Pin, P.A., R. Benlloch, D. Bonnet, E. Wremerth-Weich, T. Kraft, J.J.L. Gielen, and O. Nilsson. 2010. An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science 330 (6009): 1397–1400.

    CAS  PubMed  Google Scholar 

  • Pin, P.A., W.Y. Zhang, S.H. Vogt, N. Dally, B. Büttner, G. Schulze-Buxloh, N.S. Jelly, T.Y.P. Chia, E.S. Mutasa-Göttgens, J.C. Dohm, H. Himmelbauer, B. Weisshaar, J. Kraus, J.J.L. Gielen, M. Lommel, G. Weyens, B. Wahl, A. Schechert, O. Nilsson, C. Jung, T. Kraft, and A.E. Müller. 2012. The role of a pseudo-response regulator gene in life cycle adaptation and domestication of beet. Current Biology 22 (12): 1095–1101.

    CAS  PubMed  Google Scholar 

  • Reeves, P.A., Y.H. He, R.J. Schmitz, R.M. Amasino, L.W. Panella, and C.M. Richards. 2007. Evolutionary conservation of the FLOWERING LOCUS C-mediated vernalization response: evidence from the sugar beet (Beta vulgaris). Genetics 176 (1): 295–307.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richter, R., C. Behringer, M. Zourelidou, and C. Schwechheimer. 2013. Convergence of auxin and gibberellin signalling on the regulation of the GATA transcription factors GNC and GNL in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 110 (32): 13192–13197.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Searle, I., and G. Coupland. 2004. Induction of flowering by seasonal changes in photoperiod. The EMBO Journal 23: 1217–1222.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Somers, D.E., and S. Fujiwara. 2009. Thinking outside the F-box: novel ligands for novel receptors. Trends in Plant Science 14 (4): 206–213.

    CAS  PubMed  Google Scholar 

  • Sung, S., and R.M. Amasino. 2004. Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427 (6970): 159–164.

    CAS  PubMed  Google Scholar 

  • Tao, Z., L. Shen, X. Gu, Y. Wang, H. Yu, and Y. He. 2017. Embryonic epigenetic reprogramming by a pioneer transcription factor in plants. Nature 551 (7678): 124–128.

    PubMed  Google Scholar 

  • Vogt, S.H., G. Weyens, M. Lefbvre, B. Bork, A. Schechert, and A.E. Mller. 2014. The FLC-like gene BvFL1 is not a major regulator of vernalization response in biennial beets. Frontiers in Plant Science 5: 146.

    PubMed  PubMed Central  Google Scholar 

  • Wang, J. 2014. Regulation of flowering time by the miR156-mediated age pathway. Journal of Experimental Botany 65 (17): 4723–4730.

    CAS  PubMed  Google Scholar 

  • Wei, T., and V. Simko. 2013. corrplot: visualization of a correlation matrix. R Package Version 230 (231): 11.

    Google Scholar 

  • Xu, S., and K. Chong. 2018. Remembering winter through vernalisation. Nature Plants 4 (12): 997–1009.

    PubMed  Google Scholar 

  • Ye, J., G. Coulouris, I. Zaretskaya, I. Cutcutache, S. Rozen, and T.L. Madden. 2012. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13 (1): 134.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, J.W., V. Rubio, N.Y. Lee, S. Bai, S.Y. Lee, S.S. Kim, L. Liu, Y. Zhang, M.L. Irigoven, J.A. Sulivan, Y. Zhang, I. Lee, Q. Xie, N.C. Paek, and X.W. Deng. 2009. COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability. Molecular Cell 32 (5): 617–630.

    Google Scholar 

Download references

Funding

This work was supported by the Fundamental Research Fund for the Provincial Universities Basal Research Project in Heilongjiang Province (RCCXYJ201810), the China Agriculture Research System (CARS-170111), and the Project of Species and National Sugar Beet Germplasm Resources Platform (NICGR-2019-017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zedong Wu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Code Availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pi, Z., Xing, W., Zhu, X. et al. Temporal Expression Pattern of Bolting-Related Genes During Vernalization in Sugar Beet. Sugar Tech 23, 146–157 (2021). https://doi.org/10.1007/s12355-020-00886-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-020-00886-z

Keywords

Navigation