Skip to main content

Advertisement

Log in

Characterization and Metabolism of Bound Residues of Three Herbicides in Soils Amended with Sugarcane Waste

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

This study evaluated the remobilization, mineralization, and metabolism of herbicide-bound residues in soils amended with various types of sugarcane waste. Soil with bound residues of three herbicides and fresh soil samples were added to the biometric flasks, followed by the addition of vinasse, filter cake, or sugarcane straw in order to reactivate the microbial activity. In sandy loam soil, higher mineralization was observed where filter cake was added, and the maximum mineralized percentage was 7.7, 46.7, and 8.1% of diuron-, hexazinone-, and metribuzin-bound residues, respectively. Conversely, this soil presented a greater percentage of re-extractable hexazinone and metribuzin residues when vinasse was added. Among the examined herbicides, a higher percentage of bound metribuzin residues remained in the soil (57.5–75.6%). It was possible to identify both metabolites and parent compounds in the re-extracted residues, implying either species could bind to the soil. Therefore, this study has shown that bound residues of three herbicides and their metabolites can become bioavailable, and mineralized or returned to the soil solution, which could adversely affect subsequent crops or non-target organisms. Hence, the remobilization of bound residues must be taken into account when assessing the environmental risk of herbicides in soils in registration processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andreia, M.M., and F.M. Wiendl. 1995. Formation and biorelease of bound residues of pesticides in two Brazilian soils:1—[14C]-lindane. Pesquisa Agropecuária Brasileira 30(5): 687–694.

    Google Scholar 

  • Arias-Estévez, M., E. López-Periago, E. Martínez-Carballo, J. Simal-Gándara, J.C. Mejuto, and L. García-Río. 2008. The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agriculture, Ecosystems & Environment 123(4): 247–260.

    Google Scholar 

  • Barriuso, E., P. Benoit, and I.G. Dubus. 2008. Formation of pesticide nonextractable (bound) residues in soil: Magnitude, controlling factors and reversibility. Environmental Science and Technology 42: 1845–1854.

    CAS  PubMed  Google Scholar 

  • Cabrera, A., L. Cox, P. Velarde, W.C. Koskinen, and J. Cornejo. 2007. Fate of diuron and terbuthylazine in soils amended with two-phase olive oil mill waste. Journal of Agricultural and Food Chemistry 55(12): 4828–4834.

    CAS  PubMed  Google Scholar 

  • Companhia Ambiental do Estado de São Paulo-CETESB. 2015. P4.231: Stillage: Criteria and Procedures for Agricultural Soil Application. São Paulo, Brazil: CETESB.

  • Christofoletti, C.A., J.P. Escher, J.E. Correia, J.F.U. Marinho, and C.S. Fontanetti. 2013. Sugarcane vinasse: Environmental implications of its use. Waste Management 33(12): 2752–2761.

    CAS  PubMed  Google Scholar 

  • Dalton, R.L., A.W. Evans, and R.C. Rhodes. 1966. Disappearance of diuron from cotton field soils. Weeds 14(1): 31–33.

    CAS  Google Scholar 

  • El Sebaï, T., M. Devers-Lamrani, B. Lagacherie, N. Rouard, G. Soulas, and F. Martin-Laurent. 2010. Isoproturon mineralization in an agricultural soil. Biology and Fertility of Soils 47(4): 427–435.

    Google Scholar 

  • Ellegaard-Jensen, L., B.E. Knudsen, A. Johansen, C.N. Albers, J. Aamand, and S. Rosendahl. 2014. Fungal–bacterial consortia increase diuron degradation in water-unsaturated systems. Science of the Total Environment 466–467: 699–705.

    Google Scholar 

  • Führ, F., H. Ophoÿ, P. Burauel, U. Wanner, and K. Haider. 1998. Modification of the definition of bound residues. In Pesticide bound residues in soil. Senate Commission for the Assessment of Chemicals used in Agriculture, 175–176. Berlin: Wiley-VCH.

  • Giacomazzi, S., and N. Cochet. 2004. Environmental impact of diuron transformation: A review. Chemosphere 56(11): 1021–1032.

    CAS  PubMed  Google Scholar 

  • Guimarães, A.C.D., K.F. Mendes, F.C. Reis, T.F. Campion, P.J. Christoffoleti, and V.L. Tornisielo. 2018. Role of soil physicochemical properties in quantifying the fate of diuron, hexazinone, and metribuzin. Environmental Science and Pollution Research 25(13): 12419–12433.

    PubMed  Google Scholar 

  • Hassuani, S. 2005. Biomass power generation: Sugarcane bagasse and trash. In Série Caminhos para Sustentabilidade, ed. S. Hassuani, M. Leal, and I. Macedo, 1–217. Piracicaba: PNUD-CTC.

    Google Scholar 

  • Karanasios, E.C., N.G. Tsiropoulos, and D.G. Karpouzas. 2013. Quantitative and qualitative differences in the metabolism of pesticides in biobed substrates and soil. Chemosphere 93(1): 20–28.

    CAS  PubMed  Google Scholar 

  • Kasozi, G.N., P. Nkedi-Kizza, S. Agyin-Birikorang, and A.R. Zimmerman. 2010. Characterization of adsorption and degradation of diuron in carbonatic and noncarbonatic soils. Journal of Agricultural and Food Chemistry 58(2): 1055–1061.

    CAS  PubMed  Google Scholar 

  • Khoury, R., A. Geahchan, C.M. Coste, J.F. Cooper, and A. Bobe. 2003. Retention and degradation of metribuzin in sandy loam and clay soils of Lebanon. Weed Research 43(4): 252–259.

    CAS  Google Scholar 

  • Kjær, J., P. Olsen, T. Henriksen, and M. Ullum. 2005. Leaching of metribuzin metabolites and the associated contamination of a sandy Danish aquifer. Environmental Science and Technology 39: 8374–8381.

    PubMed  Google Scholar 

  • Lalah, J.O., B.M. Muendo, and Z.M. Getenga. 2009. The Dissipation of hexazinone in tropical soils under semi-controlled field conditions in Kenya. Journal of Environmental Science and Health Part B 44(7): 690–696.

    CAS  Google Scholar 

  • Liu, J., Y. Wang, B. Jiang, L. Wang, J. Chen, H. Guo, and R. Ji. 2013. Degradation, metabolism, and bound-residue formation and release of tetrabromobisphenol A in soil during sequential anoxic–oxic incubation. Environmental Science and Technology 47(15): 8348–8354.

    CAS  PubMed  Google Scholar 

  • Locke, M.A., and S.S. Harper. 1991. metribuzin degradation in soil: II-effects of tillage. Pesticide Science 31(2): 239–247.

    CAS  Google Scholar 

  • Lourencetti, C., M.R.R. Marchi, and M.L. Ribeiro. 2012. Influence of sugar cane vinasse on the sorption and degradation of herbicides in soil under controlled conditions. Journal of Environmental Science and Health Part B 47(10): 949–958.

    CAS  Google Scholar 

  • Marinho, D.A., S.T. Bicalho, and E.M. Ferreira. 2012. Distribution and mineralization of 14C-hexazinone in soil-plant microcosm with the riparian forest specie Cecropia hololeuca. Journal of Bioremediation and Biodegradation 1: 10–15.

    Google Scholar 

  • Moretto, J.A.S., J.P.R. Furlan, A.F.T. Fernandes, A. Bauermeister, N.P. Lopes, and E.G. Stehling. 2019. Alternative biodegradation pathway of the herbicide diuron. International Biodeterioration and Biodegradation 143(2019): e104716.

    Google Scholar 

  • Munier-Lamy, C., M.P. Feuvriera, and T. Chonéb. 2002. Degradation of 14C-atrazine bound residues in brown soil and rendzina fractions. Journal of Environmental Quality 31(1): 241–247.

    CAS  PubMed  Google Scholar 

  • Mutua, G.K., A.N. Ngigi, and Z.M. Getenga. 2016. Degradation characteristics of metribuzin in soils within the Nzoia river drainage basin, Kenya. Toxicological and Environmental Chemistry 7: 800–813.

    Google Scholar 

  • Nowak, K.M., A. Miltner, M. Gehre, A. Schäffer, and M. Kästner. 2011. Formation and fate of bound residues from microbial biomass during 2,4-D degradation in soil. Environmental Science and Technology 45(3): 999–1006.

    CAS  PubMed  Google Scholar 

  • Organisation for Economic Co-operation and Development-OECD. 2002. Test No. 307: Aerobic and anaerobic transformation in soil. Paris: OECD.

  • Paredes, F.P., I.I.R. Portilho, and F.M. Mercante. 2015. Microbiological attributes of the soil under cultivation of sugar cane with and without burning straw. Semina: Ciências Agrárias 36(1): 151–164.

    Google Scholar 

  • Pateiro-Moure, M., M. Arias-Estévez, and J. Simal-Gándara. 2013. Critical review on the environmental fate of quaternary ammonium herbicides in soils devoted to vineyards. Environmental Science and Technology 47(10): 4984–4998.

    CAS  PubMed  Google Scholar 

  • Pesticides Properties DataBase-PPDB. 2020. University of Hertfordshire. http://sitem.herts.ac.uk/aeru/footprint/index2.htm. Accessed 3 August 2020.

  • Queiroz, S.C.N., V.L. Ferracini, and M.A. Rosa. 2012. Validação de método multirresíduo para determinação de pesticidas em alimentos empregando QuEChERS e UPLC-MS/MS. Química Nova 35(1): 185–192.

    CAS  Google Scholar 

  • Rasul, G., K.S. Khan, T. Müller, and R.G. Joergensen. 2008. Soil-microbial response to sugarcane filter cake and biogenic waste compost. Journal of Plant Nutrition and Soil Science 171(3): 355–360.

    CAS  Google Scholar 

  • Reiser, R.W., I.J. Belasco, and R.C. Rhodes. 1983. Identification of metabolites of hexazinone by mass spectrometry. Biological Mass Spectrometry 10(11): 581–585.

    CAS  Google Scholar 

  • Rhodes, R.C. 1980. Soil studies with 14C-labeled hexazinone. Journal of Agricultural and Food Chemistry 28: 311–315.

    CAS  Google Scholar 

  • Roberts, T., W. Klein, G. Still, P. Kearney, N. Dresher, J. Desmoras, H. Esser, N. Aharonson, and J. Vonk. 1984. Non-extractable pesticide residues in soils and plants. Pure and Applied Chemistry 56(7): 945–956.

    Google Scholar 

  • Salvestrini, S. 2013. Diuron herbicide degradation catalyzed by low molecular weight humic acid-like compounds. Environmental Chemistry Letters 11(4): 359–363.

    CAS  Google Scholar 

  • Santos, T.M.C., M.A.L. Santos, C.G. Santos, V.R. Santos, and D.S. Pacheco. 2009. Effect of fertirrigation with in nature vinasse on the microorganism of the soil. Revista da Caatinga 22(1): 155–160.

    Google Scholar 

  • Shaner, D.L. 2014. Herbicide handbook, 10th ed. Champaign: Weed Science Society of America.

    Google Scholar 

  • Shareef, A., D. Page, J. Vanderzalm, M. Williams, V.V.S.R. Gupta, P. Dillon, and R. Kookana. 2014. Biodegradation of simazine and diuron herbicides under aerobic and anoxic conditions relevant to managed aquifer recharge of storm water. CLEAN: Soil, Air, Water 42(6): 745–752.

    CAS  Google Scholar 

  • Tandon, S. 2019. Herbicide residues in rice–wheat cropping system in Uttarakhand. In Herbicide residue research in India, 1st ed, ed. S. Sondhia, P.P. Choudhury, and A.R. Sharma, 253–260. Singapore: Springer.

    Google Scholar 

  • Tandon, S., and R. Pant. 2019. Kinetics of diuron under aerobic condition and residue analysis in sugarcane under subtropical field conditions. Environmental Technology 40(1): 86–93.

    CAS  PubMed  Google Scholar 

  • Tandon, S., A. Pujari, and N.K. Sand. 2012. Dissipation studies of fentrazamide (YRC-2388) under anaerobic condition. Journal of Environmental Monitoring 14(9): 2521–2526.

    CAS  PubMed  Google Scholar 

  • United States Environmental Protection Agency-USEPA. 1994. Reregistration Eligibility Decision (RED) Hexazinone. Washington, D.C.: USEPA.

    Google Scholar 

  • United States Environmental Protection Agency-USEPA. 1998. Reregistration Eligibility Decision (RED) for Metribuzin. List A Case 0181. Washington, D.C.: USEPA.

  • United States Environmental Protection Agency-USEPA. 2003. Reregistration Eligibility Decision (RED) for Diuron. List A Case 0046. Washington, D.C.: USEPA.

  • Wahla, A.Q., S. Iqbal, S. Anwar, S. Firdous, and J.A. Mueller. 2019. Optimizing the metribuzin degrading potential of a novel bacterial consortium based on Taguchi design of experiment. Journal of Hazardous Materials 366: 1–9.

    CAS  PubMed  Google Scholar 

  • Wang, H., Y. Li, Y. Lu, C. Huang, M. Zhang, and X. Wang. 2009. Influence of bovine manure on dissipation of hexazinone in soil. Ecotoxicology and Environmental Safety 72(1): 93–98.

    CAS  PubMed  Google Scholar 

  • Wang, H., C. Wang, F. Chen, M. Ma, Z. Lin, W. Wang, Z. Xu, and X. Wang. 2012. Modification to degradation of hexazinone in forest soils amended with sewage sludge. Journal of Hazardous Materials 199–200: 96–104.

    PubMed  Google Scholar 

  • Wang, X., H. Wang, and C. Tan. 2005. Degradation and metabolism of hexazinone by two isolated bacterial strains from soil. Chemosphere 61(10): 1468–1474.

    CAS  PubMed  Google Scholar 

  • Zeng, T., and W.A. Arnold. 2013. Pesticide photolysis in prairie potholes: Probing photosensitized processes. Environmental Science and Technology 47(13): 6735–6745.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the São Paulo Research Foundation (FAPESP) process 2011/15677-0, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kassio Ferreira Mendes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viti, M.L., Mendes, K.F., dos Reis, F.C. et al. Characterization and Metabolism of Bound Residues of Three Herbicides in Soils Amended with Sugarcane Waste. Sugar Tech 23, 23–37 (2021). https://doi.org/10.1007/s12355-020-00884-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-020-00884-1

Keywords

Navigation