Response of Pre-sprouted Sugarcane Seedlings to Foliar Spraying of Potassium Silicate, Sodium and Potassium Silicate, Nanosilica and Monosilicic Acid

Abstract

Silicon (Si) applied via foliar on pre-sprouted sugarcane seedlings is a practical alternative for supplying Si, however, it is necessary to use an adequate Si source and optimal concentration, but this information is unknown. This study evaluates the effect of alternative Si sources applied via foliar spraying at lower concentrations in relation to potassium silicate, on Si accumulation and the beneficial effects on pre-sprouted sugarcane seedlings and initial growth. Two experiments were carried out in a greenhouse, one in the production phase of pre-sprouted seedlings and the other in the initial growth phase of sugarcane grown in pots. Both experimental designs were randomized blocks with treatments arranged in a 4 × 5 factorial scheme, with four Si sources: nanosilica (Si-nano), monosilicic acid stabilized with PEG-400 (Si-acid), sodium and potassium silicate stabilized with sorbitol (Si-alkali) and potassium silicate (Si-K) in five concentrations (0, 0.25, 0.5, 0.75 and 1.0 mmol L−1), and 4 repetitions. The Si syrup pH was adjusted to 5.5 ± 0.2. The foliar spraying of Si on pre-sprouted sugarcane seedlings is feasible since it increased Si accumulation, and benefited seedling production and plant initial growth. Soluble Si sources with stabilizers increased Si accumulation more efficiently compared to potassium silicate (Si-K) and nanosilica (Si-nano). Plants that have been sprayed with the PEG-400-stabilized monosilicic acid (Si-acid) and the sorbitol-stabilized sodium and potassium silicate (Si-alkali) at 0.5 and 0.6 mmol L−1 concentrations, respectively, promote had greater Si accumulation and beneficial effects in the growth of pre-sprouted sugarcane seedlings in production phase. In the initial growth of sugarcane, the sources Si-acid and S-alkali also increase the buildup and beneficial effects, but both sources at 0.6 mmol L−1 concentrations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Babiker, A.G.T., and H.J. Duncan. 1974. Penetration of bracken fronds by asulam as influenced by the addition of surfactant to the spray solution and by pH. Weed Research 14: 375–377. https://doi.org/10.1111/j.1365-3180.1974.tb01078.x.

    CAS  Article  Google Scholar 

  2. Birchall, J.D. 1995. The essentiality of silicon in biology. Chemical Society Reviews 24: 351–357. https://doi.org/10.1039/CS9952400351.

    CAS  Article  Google Scholar 

  3. Camargo, M.S., B.K.L. Bezerra, L.A. Holanda, A.L. Oliveira, A.C. Vitti, and M.A. Silva. 2019. Silicon fertilization improves physiological responses in sugarcane cultivars grown under water deficit. Journal of Soil Science and Plant Nutrition 19: 81–91. https://doi.org/10.1007/s42729-019-0012-1.

    CAS  Article  Google Scholar 

  4. Cavalcante, V.S., R.M. Prado, R.L. Vasconcelos, and C.N.S. Campos. 2016. Iron concentrations in sugar cane (Saccharum officinarum L.) cultivated in nutrient solution. Agrociencia 50: 867–875.

    Google Scholar 

  5. D’Souza, A.A., and R. Shegokar. 2016. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert opinion on drug delivery 13: 1257–1275. https://doi.org/10.1080/17425247.2016.1182485.

    CAS  Article  PubMed  Google Scholar 

  6. Daros, E., R.A. Oliveira, and G.V.S. Barbosa. 2015. 45 anos de variedades RB de cana de açucar. 1a. Curitiba: Graciosa.

  7. Epstein, E. 1994. The anomaly of silicon in plant biology. Proceedings of the National Academy of Sciences of the United States of America 91: 11–17. https://doi.org/10.1073/pnas.91.1.11.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Hermann, E.R., and G.M.S. Câmara. 1999. Um método simples para estimar a área foliar da cana-de-açúcar. Revista da Sociedade dos Técnicos Açucareiros e Alcooliros do Brasil (STAB) 17: 32–34.

    Google Scholar 

  9. Hoagland, D.R., and D.I. Arnon. 1950. The water-culture method for growing plants without soil. Berkeley: The College of Agriculture University of California.

    Google Scholar 

  10. Jain, R., S.P. Singh, A. Singh, S. Singh, P. Tripathi, R. Kishor, A. Gaur, et al. 2017. Changes in growth, yield, juice quality and biochemical attributes of sugarcane in response to orthosilicic acid granules. Sugar Tech 19: 300–304. https://doi.org/10.1007/s12355-016-0469-3.

    CAS  Article  Google Scholar 

  11. Keeping, M.G. 2017. Uptake of silicon by sugarcane from applied sources may not reflect plant-available soil silicon and total silicon content of sources. Frontiers in Plant Science 8: 1–14. https://doi.org/10.3389/fpls.2017.00760.

    Article  Google Scholar 

  12. Korndörfer, G.H., H.S. Pereira, and A. Nolla. 2004. Análise de silício no solo, planta e fertilizantes, 2nd ed. Uberlândia: UFU.

    Google Scholar 

  13. Kudryavtsev, P.G., and O.L. Figovsky. 2016. Nanocomposite organomineral hybrid materials. Part I. Nanotechnologies in Construction: A Scientific Internet-Journal 8: 16–49. https://doi.org/10.15828/2075-8545-2016-8-3-16-56.

    Article  Google Scholar 

  14. Laane, H.M. 2017. The effects of the application of foliar sprays with stabilized silicic acid: an overview of the results from 2003-2014. Silicon 9: 803–807. https://doi.org/10.1007/s12633-016-9466-0.

    CAS  Article  Google Scholar 

  15. Laane, H.M. 2018. The effects of foliar sprays with different silicon compounds. Plants 7: 45. https://doi.org/10.3390/plants7020045.

    CAS  Article  PubMed Central  Google Scholar 

  16. Landell, M.G.A., M.P. Campana, P. Figueiredo, M.A. Xavier, I.A. Anjos, L.L. Dinardo-Miranda, M.S. Scarpari, et al. 2012. Sistema de multiplicação de cana-de-açúcar com uso de mudas pré-brotadas (MPB), oriundas de gemas individualizadas. Campinas: IAC.

    Google Scholar 

  17. Marin, F.R. 2020. Árvore do conhecimento: cana-de-açúcar—variedades. Embrapa. http://www.agencia.cnptia.embrapa.br/gestor/cana-de-acucar/arvore/CONTAG01_42_1110200717570.html. Accessed 06 April 2020.

  18. Matsuoka, S. 2017. Free fiber level drives resilience and hybrid vigor in energy cane. Journal of Scientific Achievements 2: 1–35.

    Google Scholar 

  19. McKeague, J.A., and M.G. Cline. 1963. Silica in soils. Advances in Agronomy 15: 339–396. https://doi.org/10.1016/S0065-2113(08)60403-4.

    Article  Google Scholar 

  20. Mitani, N., N. Yamaji, and J.F. Ma. 2009. Identification of maize silicon influx transporters. Plant and Cell Physiology 50: 5–12. https://doi.org/10.1093/pcp/pcn110.

    CAS  Article  PubMed  Google Scholar 

  21. Neeru, J., C. Shaliesh, T. Vaishali, S. Purav, and R. Manoherlal. 2019. Role of orthosilicic acid (OSA) based formulation in improving plant growth and development. Silicon 11: 2407–2411. https://doi.org/10.1007/s12633-015-9380-x.

    CAS  Article  Google Scholar 

  22. Oliveira, R.L.L., R.M. Prado, G. Felisberto, and F.J.R. Cruz. 2019. Different sources of silicon by foliar spraying on the growth and gas exchange in sorghum. Journal of Soil Science and Plant Nutrition 19: 948–953. https://doi.org/10.1007/s42729-019-00092-1.

    CAS  Article  Google Scholar 

  23. Pei, Z.F., D.F. Ming, D. Liu, G.L. Wan, X.X. Geng, H.J. Gong, and W.J. Zhou. 2010. Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. Journal of Plant Growth Regulation 29: 106–115. https://doi.org/10.1007/s00344-009-9120-9.

    CAS  Article  Google Scholar 

  24. Raven, J.A. 1983. The transport and function of silicon in plants. Biological Reviews 58: 179–207. https://doi.org/10.1111/j.1469-185x.1983.tb00385.x.

    CAS  Article  Google Scholar 

  25. Rohanipoor, A., M. Norouzi, A. Moezzi, and P. Hassibi. 2013. Effect of silicon on some physiological properties of maize (Zea mays) under salt stress. Journal of Biological and Environmental Sciences 7: 71–79.

    Google Scholar 

  26. Shen, X.F., Z.H. Zhao, and Y. Chen. 2019. Effects of intercropping with peanut and silicon application on sugarcane growth, yield and quality. Sugar Tech 21: 437–443. https://doi.org/10.1007/s12355-018-0667-2.

    CAS  Article  Google Scholar 

  27. Streit, N.M., L.P. Canterle, M.W. Canto, and L.H.H. Hecktheuer. 2005. As clorofilas. Ciência Rural 35: 748–755. https://doi.org/10.1590/s0103-84782005000300043.

    CAS  Article  Google Scholar 

  28. Zanão Júnior, L.A., R.L.F. Fontes, and V.T. Ávila. 2009. Aplicação do silício para aumentar a resistência do arroz à mancha-parda. Pesquisa Agropecuária Brasileira 44: 203–206. https://doi.org/10.1590/S0100-204X2009000200013.

    Article  Google Scholar 

Download references

Acknowledgements

The support of the São Paulo State University (UNESP) and Coordination of Improvement of Higher Education Personnel—Brazil (CAPES) are recognized with gratitude.

Funding

Funding

This study was funded by Coordenadoria de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil, Code 001.

Author information

Affiliations

Authors

Contributions

Author Contributions

The authors contributed equally to the work.

Corresponding author

Correspondence to Gelza Carliane Marques Teixeira.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

dos Santos, L.C.N., Teixeira, G.C.M., Prado, R.M. et al. Response of Pre-sprouted Sugarcane Seedlings to Foliar Spraying of Potassium Silicate, Sodium and Potassium Silicate, Nanosilica and Monosilicic Acid. Sugar Tech 22, 773–781 (2020). https://doi.org/10.1007/s12355-020-00833-y

Download citation

Keywords

  • Plant nutrition
  • Concentration
  • Beneficial element
  • Stabilizers
  • Saccharum officinarum L.