Mitigating Climate Change for Sugarcane Improvement: Role of Silicon in Alleviating Abiotic Stresses

Abstract

Climatic variables are the main factors determining the crop productivity, and these undergo changes in the course of time. Though silicon (Si) is not an essential element for the plants, its significant role has been observed in various plant species. Use of silicon could stimulate plant growth and mitigate multiple stresses such as salinity, drought, heat, extreme temperature, metal toxicity and nutritional imbalance as well as the stress linked with changes in global climatic variables. Silicon can also delay leaf senescence. In addition, Si is not harmful to plants even when present in excess. Eco-friendly techniques would be needed for addressing the growing demands for food grains and other agricultural production. The use of Si would become a sustainable strategy for increasing crop yield, improving quality and mitigating abiotic stresses in the near future. This review highlights our current understanding on the use of silicon to mitigate abiotic stresses and enhance crop production.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Acquaah, G. 2007. Principles of plant genetics and breeding. Oxford: Blackwell.

    Google Scholar 

  2. Adrees, M., S. Ali, M. Rizwan, M. Zia-ur-Rehman, M. Ibrahim, F. Abbas, M. Farid, M.F. Qayyum, and M.K. Irshad. 2015. Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxicology and Environmental Safety 119: 186–197.

    CAS  PubMed  Google Scholar 

  3. Akhtar, S., A. Wahid, and E. Rasul. 2003. Emergence, growth and nutrient composition of sugarcane sprouts under NaCl salinity. Biologiae Plantarum 46: 113–116.

    CAS  Google Scholar 

  4. Al-Karaki, G.N., R.B. Clark, and C.Y. Sullivan. 1996. Phosphorus nutrition and water effects on proline accumulation in sorghum and bean. Journal of Plant Physiology 148: 745–751.

    CAS  Google Scholar 

  5. Arnon, D.I., and P.R. Stout. 1939. The essentiality of certain elements in minute quantity for plants, with special reference to copper. Plant Physiology 14: 371–375.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ashraf, M., A.R. Rahmatullah, A.S. Bhatti, M. Afzal, A. Sarwar, M.A. Maqsood, and S. Kanwal. 2010. Amelioration of salt stress in sugarcane (Saccharum officinarum L.) by supplying potassium and silicon in hydroponics. Pedosphere 20: 153–162.

    CAS  Google Scholar 

  7. Azevedo, R.A., R.F. Carvalho, M.C. Cia, and P.L. Gratao. 2011. Sugarcane under pressure: an overview of biochemical and physiological studies of abiotic stress. Tropical Plant Biology 4: 42–51.

    CAS  Google Scholar 

  8. Bassi, B., M. Menossi, and L. Mattiello. 2018. Nitrogen supply influences photosynthesis establishment along the sugarcane leaf. Scientific Reports 8: 2327.

    PubMed  PubMed Central  Google Scholar 

  9. Bezerra, B.K.L., G.P.P. Lima, A.R. dos Reis, M.A. Silva, and M.S. de Camargo. 2019. Physiological and biochemical impacts of silicon against water deficit in sugarcane. Acta Physiologiae Plantarum 41: 189. https://doi.org/10.1007/s11738-019-2980-0.

    CAS  Article  Google Scholar 

  10. Bhavya, H.K., V.V. Nache Gowda, S. Jaganath, K.N. Sreenivas, and N.B. Prakash. 2011. Effect of foliar silicic acid and boron acid in Bangalore blue grapes. Proceedings of the 5th International Conference on silicon in Agriculture, Beijing, China, 7–8.

  11. Bityutskii, N., J. Pavlovic, K. Yakkonen, V. Maksimovi, and M. Nikolic. 2014. Contrasting effect of silicon on iron, zinc and manganese status and accumulation of metal mobilizing compounds in micronutrient deficient cucumber. Plant Physiology and Biochemistry 74: 205–211.

    CAS  PubMed  Google Scholar 

  12. Bodner, G., A. Nakhforoosh, and H.-P. Kaul. 2015. Management of crop water under drought: a review. Agronomy for Sustainable Development 35: 401–442.

    Google Scholar 

  13. Bokhtiar, S.M., H.R. Huang, and Y.R. Li. 2012. Response of sugarcane to calcium silicate on yield, gas exchange characteristics, leaf nutrient concentrations, and soil properties in two different soils. Soil Science and Plant Analysis 43: 1363–1381.

    CAS  Google Scholar 

  14. Boyer, J.S. 1982. Plant productivity and environment. Science 218: 443–448.

    CAS  PubMed  Google Scholar 

  15. Brenchley, W.E., E.J. Maskell, and W. Katherine. 2008. The inter-relation between silicon and other elements in plant nutrition. Annals of Applied Biology 14: 45–82.

    Google Scholar 

  16. Calsa, T.A., Jr., and A. Figueira. 2007. Serial analysis of gene expression in sugarcane (Saccharum spp.) leaves revealed alternative C4 metabolism and putative antisense transcripts. Plant Molecular Biology 63: 745–762.

    CAS  PubMed  Google Scholar 

  17. Carmen, B., and D. Roberto. 2011. Soil bacteria support and protect plants against abiotic stresses. In Abiotic stress in plants mechanisms and adaptations, ed. A. Shan, 143–170. Singapore: Pub In Technology.

    Google Scholar 

  18. Cheong, Y.W.Y., and P.Y. Chan. 1973. Incorporation of P32 in phosphate esters of the sugar cane plant and the effect of Si and Al on the distribution of these esters. Plant and Soil 38: 113–123.

    CAS  Google Scholar 

  19. Coskun, D., R. Deshmukh, H. Sonah, J.G. Menzies, O. Reynolds, J.F. Ma, H. Kronzucker, and R.R. Belanger. 2019. The controversies of silicon’s role in plant biology. New Phytologist 221: 67–85.

    PubMed  Google Scholar 

  20. De Souza, A.P., A. Grandis, B.C. Arenque-Musa, and M.S. Buckeridge. 2018. Diurnal variation in gas exchange and nonstructural carbohydrates throughout sugarcane development. Functional Plant Biology 45: 865–876.

    PubMed  Google Scholar 

  21. Desplanques, V., L. Cary, J.C. Mouret, F. Trolard, G. Bourrie, O. Grauby, et al. 2006. Silicon transfers in a rice field in Camargue (France). Journal of Geochemical Exploration 88: 190–193.

    CAS  Google Scholar 

  22. Dias, M.O.S., et al. 2011. Second generation ethanol in Brazil: Can it compete with electricity production? Bioresource Technology 102: 8964–8971.

    CAS  PubMed  Google Scholar 

  23. Dinh, T.H., K. Watanabe, H. Takaragawa, M. Nakabaru, and Y. Kawamitsu. 2017. Photosynthetic response and nitrogen use efficiency of sugarcane under drought stress conditions with different nitrogen application levels. Plant Production Science 20: 412–422.

    CAS  Google Scholar 

  24. Du Toit, J.L., B.E. Beater, and R.R. Maud. 1962. Available soil phosphate and yield responses in sugarcane. Proceeding of the International Society for Sugar Cane Technologists 11: 101–111.

    Google Scholar 

  25. Du, Y.C., A. Nose, and K. Wasano. 1999. Effects of chilling temperature on photosynthetic rates, photosynthetic enzyme activities and metabolite levels in leaves of three sugarcane species. Plant Cell and Environment 22: 317–324.

    CAS  Google Scholar 

  26. Du, Y.C., A. Nose, K. Wasano, and Y. Uchida. 1998. Responses to water stress of enzyme activities and metabolite levels in relation to sucrose and starch synthesis, the Calvin cycle and the C4 pathway in sugarcane (Saccharum sp) leaves. Australian Journal of Plant Physiology 25: 253–260.

    CAS  Google Scholar 

  27. Du, Y.C., and A. Nose. 2002. Effects of chilling temperature on the activity of enzymes of sucrose synthesis and the accumulation of saccharides in leaves of three sugarcane cultivars differing in cold sensitivity. Photosynthetica 40: 389–395.

    CAS  Google Scholar 

  28. Edreva, A. 2005. Generation and scavenging of reactive oxygen species in chloroplasts: a submolecular approach. Agriculture, Ecosystems and Environment 106: 119–133.

    CAS  Google Scholar 

  29. Eneji, A.E., S. Inanaga, S. Muranaka, J. Li, T. Hattori, P. An, and W. Tsuji. 2008. Growth and nutrient use in four grasses under drought stress as mediated by silicon fertilizers. Journal of Plant Nutrition 31: 355–365.

    CAS  Google Scholar 

  30. Epstein, E. 2001. Silicon in plants: facts versus concepts. Studies in Plant Science 8: 1–15.

    CAS  Google Scholar 

  31. Epstein, E. 1994. The anomaly of silicon in plant biology. Proceeding of National Academy Sciences 91: 11–17.

    CAS  Google Scholar 

  32. Epstein, E., and A.J. Bloom. 2005. Mineral nutrition of plants: principles and perspectives, 2nd ed. Sunderland: Sinauer Associates Inc.

    Google Scholar 

  33. Etesami, H. 2017. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: mechanisms and future prospects. Ecotoxicology and Environmental Safety 147: 175–191.

    PubMed  Google Scholar 

  34. Etesami, H. 2018. Can interaction between silicon and plant growth promoting rhizobacteria benefits in alleviating abiotic and biotic stresses in crop plants? Agriculture, Ecosystems and Environment 253: 98–112.

    CAS  Google Scholar 

  35. Etesami, H., and B.R. Jeong. 2018. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicology and Environmental Safety 147: 881–896.

    CAS  PubMed  Google Scholar 

  36. Exley, C. 2015. A possible mechanism of biological silicification in plants. Frontiers in Plant Science 6: 853. https://doi.org/10.3389/fpls.2015.00853.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Farooq, M., A. Wahid, N. Kobayashi, D. Fujita, and S.M.A. Basra. 2009. Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development 29: 185–212.

    Google Scholar 

  38. Fornazier, R.F., R.R. Ferreira, A.P. Vitoria, S.M.G. Molina, P.J. Lea, and R.A. Azevedo. 2002. Effects of cadmium on antioxidant enzyme activities in sugar cane. Biologia Plantarum 45: 91–97.

    CAS  Google Scholar 

  39. Gandonou, C.B., T. Errabii, J. Abrini, M. Idaomar, and N.S. Senhaji. 2006. Selection of callus cultures of sugarcane (Saccharum sp.) tolerant to NaCl and their response to salt stress. Plant Cell, Tissue and Organ Culture 87: 9–16.

    CAS  Google Scholar 

  40. Ghannoum, O. 2008. C4 photosynthesis and water stress. Annals of Botany 103: 635–644.

    PubMed  PubMed Central  Google Scholar 

  41. Glick, B.R. 2014. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiology Research 169: 30–39.

    CAS  Google Scholar 

  42. Gomes-Junior, R.A., C.A. Moldes, F.S. Delite, G.B. Pompeu, P.L. Gratao, P. Mazzafera, P.J. Lea, and R.A. Azevedo. 2006. Antioxidant metabolism of coffee cell suspension cultures in response to cadmium. Chemosphere 65: 1330–1337.

    CAS  PubMed  Google Scholar 

  43. Gonzalo, M.J., J.J. Lucena, and L. Hernández-Apaolaza. 2013. Effect of silicon addition on soybean (Glycine max) and cucumber (Cucumis sativus) plants grown under iron deficiency. Plant Physiology and Biochemistry 70: 455–461.

    CAS  PubMed  Google Scholar 

  44. Gosnell, J.M., and A.C. Long. 1969. A sulphur deficiency in sugarcane. Proceeding-South African sugar technologists association 26–29.

  45. Granja, M.M.C., M.J.A. Medeiros, M.M.D.A. Silva, T. Camara, L. Willadino, and C. Ulisses. 2018. Response to in vitro salt stress in sugarcane is conditioned by concentration and condition of exposure to NaCl. Acta biologica Colombiana 23 (1): 30–38.

    Google Scholar 

  46. Granum, E., K. Roberts, J.A. Raven, and R.C. Leegood. 2009. Primary carbon and nitrogen metabolic gene expression in the diatom Thalassiosira pseudonana (Bacillariophyceae): Diel periodicity and effects of inorganic carbon and nitrogen. Journal of Phycology 45: 1083–1092.

    CAS  PubMed  Google Scholar 

  47. Gratao, P.L., A. Polle, P.J. Lea, and R.A. Azevedo. 2005. Making the life of heavy metal-stressed plants a little easier. Functional Plant Biology 32: 481–494.

    CAS  PubMed  Google Scholar 

  48. Guimaraes, E.R., M.A. Mutton, M.J.R. Mutton, M.I.T. Ferro, G.C. Ravaneli, and J.A. Silva. 2008. Free proline accumulation in sugarcane under water restriction and spittlebug infestation. Scientia Agricola 65: 628–633.

    Google Scholar 

  49. Guntzer, F., C. Keller, and J.D. Meunier. 2012. Benefits of plant silicon for crops: a review. Agronomy for Sustainable Development 32: 201–213.

    Google Scholar 

  50. Gupta, B., and B. Huang. 2014. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics 2014 (1): 701596.

    PubMed  PubMed Central  Google Scholar 

  51. Hartt, C.E. 1965. Effect of temperature upon translocation of C14 in sugarcane. Plant Physiology 40: 74–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hu, Y., and U. Schmidhalter. 2005. Drought and salinity: a comparison of their effects on mineral nutrition of plants. Journal of Plant Nutrition and Soil Science 168: 541–549.

    CAS  Google Scholar 

  53. Inman-Bamber, N.G., and D.M. Smith. 2005. Water relations in sugarcane and response to water deficits. Field Crops Research 89: 185–202.

    Google Scholar 

  54. Inman-Bamber, N.G., G.D. Bonnett, M.F. Spillman, M.H. Hewitt, and D. Glassop. 2010. Sucrose accumulation in sugarcane is influenced by temperature and genotype through the carbon source-sink balance. Crop and Pasture Science 61: 111–121.

    Google Scholar 

  55. Jain, R., S.P. Singh, A. Singh, S. Singh, P. Tripathi, R. Kishor, A. Gaur, N. Jain, S.K. Shukla, A. Chandra, and S. Solomon. 2016. Changes in growth, yield, juice quality and biochemical attributes of sugarcane in response to orthosilicic acid granules. Sugar Tech. https://doi.org/10.1007/s12355-016-0469-3.

    Article  Google Scholar 

  56. Jain, R., A.K. Shrivastava, S. Solomon, and R.L. Yadav. 2007. Low temperature stress-induced biochemical changes affect stubble bud sprouting in sugarcane (Saccharum spp. hybrid). Plant Growth Regulators 53: 17–23.

    CAS  Google Scholar 

  57. Jewell, M.C., B.C. Campbell, and I.D. Godwin. 2010. Transgenic Plants for Abiotic Stress Resistance. Transgenic Crop Plant 67–132.

  58. Kingston, G. 2008. Silicon fertilisers-Requirements and field experiences. In: Silicon in agriculture 4th international conference, 31 Oct., Port Edward, South Africa 52.

  59. Liang, Y., M. Nikolic, R. Bélanger, H. Gong, and A. Song. 2015. Silicon in Agriculture. Dordrecht: Springer.

    Google Scholar 

  60. Liang, Y., W. Sun, Y.G. Zhu, and P. Christie. 2007. Mechanisms of silicon mediated alleviation of abiotic stresses in higher plants: a review. Environmental Pollution 146: 422–428.

    Google Scholar 

  61. Lobell, D.B., and C.B. Field. 2007. Global scale climate-crop yield relationships and the impacts of recent warming. Environmental Resources Letter 2: 014002.

    Google Scholar 

  62. Lopez-Perez, M.C., F. Perez-Labrada, L.J. Ramirez-Perez, A. Juarez-Maldonado, A.B. Morales-Diaz, S. Gonzalez-Morales, L.R. Garcia-Davila, J. García-Mata, and A. Benavides-Mendoza. 2018. Dynamic modeling of silicon bioavailability, uptake, transport, and accumulation: applicability in improving the nutritional quality of tomato. Frontiers in Plant Science. 9: 647. https://doi.org/10.3389/fpls.2018.00647.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ma, J.F. 2004. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition 50: 11–18.

    CAS  Google Scholar 

  64. Ma, J.F., Y. Miyake, and E. Takahashi. 2001. Silicon as a beneficial element for crop plants. In Silicon in agriculture, ed. L. Datnoff, G. Snyder, and G. Korndorfer, 17–39. New York: Elsevier.

    Google Scholar 

  65. McGeorge, W.T. 1925. The influence of aluminum, manganese and iron salts upon the growth of sugar cane, and their relation to the infertility of acid island soils. Bulletin of Agricultural Chemistry Ser 49: 95.

    Google Scholar 

  66. Mcginnity, P. 2015. Silicon and its role in crop production. PHD thesis.https://planttuff.com/wp content/uploads/2015/12/silicon-agricultureiiterature-rvw-1.pdf

  67. Meyer, J.H., and M.G. Keeping. 2005. The impact of nitrogen and silicon nutrition on the resistance of sugarcane varieties to Eldana saccharina (Lepidoptera: Pyralidae). Proceeding South African Sugar Technologists Association 79: 363–367.

    Google Scholar 

  68. Moore, P.H. 1995. Temporal and Spatial Regulation of Sucrose Accumulation in the Sugarcane Stem. Functional Plant Biology 22: 661–679.

    CAS  Google Scholar 

  69. Munns, R., and M. Tester. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59: 651–681.

    CAS  PubMed  Google Scholar 

  70. Naeem, A., A. Ghafoor, and M. Farooq. 2014. Suppression of cadmium concentration in wheat grains by silicon is related to its application rate and cadmium accumulating abilities of cultivars. Journal of the Science of Food and Agriculture 95: 2467–2472.

    PubMed  Google Scholar 

  71. Parida, A.K., and A.B. Das. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety 60: 324–349.

    CAS  PubMed  Google Scholar 

  72. Patade, V.Y., P. Suprasanna, and V.A. Bapat. 2008. Effects of salt stress in relation to osmotic adjustment on sugarcane (Saccharum officinarum L.) callus cultures. Plant Growth Regulation 55: 169–173.

    CAS  Google Scholar 

  73. Paul, D., and H. Lade. 2014. Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agronomy for Sustainable Development 34: 737–752.

    Google Scholar 

  74. Pei, Z., D. Ming, D. Liu, G. Wan, X. Geng, H. Gong, and W. Zhou. 2010. Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. Journal of Plant Growth Regulation 29: 106–115.

    CAS  Google Scholar 

  75. Pereira, S.C., L. Maehara, C.M.M. Machado, and C.S. Farinas. 2015. 2G ethanol from the whole sugarcane lignocellulosic biomass. Biotechnology for Biofuels 8: 44.

    PubMed  PubMed Central  Google Scholar 

  76. Plaut, Z., F. Meinzer, and E. Federman. 2000. Leaf development, transpiration and ion uptake and distribution in sugarcane cultivars grown under salinity. Plant and Soil 218: 59–69.

    CAS  Google Scholar 

  77. Rengasamy, P. 2010. Soil processes affecting crop production in salt-affected soils. Functional Plant Biology 37: 613–620.

    Google Scholar 

  78. Rodrigues, F.A., M.L. Laia, and S.M. Zingaretti. 2009. Analysis of gene expression profiles under water stress in tolerant and sensitive sugarcane plants. Plant Science 176: 286–302.

    CAS  Google Scholar 

  79. Rozeff, N. 1995. Sugarcane and salinity—a review paper. Sugarcane 5: 8–19.

    Google Scholar 

  80. Sachs, J.V. 1860. Vegetations versuchemitausschluss des bodensüber die nährstoffe und sonstigenernährungsbedingungen von mais, bohnen, undanderenpflanzen. Landw. Versuchsst 2: 219–268.

    Google Scholar 

  81. Sahebi, M., M.M. Hanafi, A.S.N. Akmar, M.Y. Rafii, P. Azizi, F.F. Tengousa, J.N.M. Azwa, and M. Shabanimofrad. 2015. Importance of silicon and mechanisms of biosilica formation in plants. BioMed Research International 2015: 396010.

    PubMed  PubMed Central  Google Scholar 

  82. Sato, A.M., T.A. Catuchi, R.V. Ribeiro, and G.M. Souza. 2010. The use of network analysis to uncover homeostatic responses of a drought-tolerant sugarcane cultivar under severe water deficit and phosphorus supply. Acta Physiologiae Plantarum 32: 1145–1151.

    CAS  Google Scholar 

  83. Savant, N.K., G.H. Korndörfer, L.E. Datnoff, and G.H. Snyder. 1999. Silicon nutrition and sugarcane production: a review. Journal of Plant Nutrition 22: 1853–1903.

    CAS  Google Scholar 

  84. Savvas, D., and G. Ntatsi. 2015. Biostimulant activity of silicon in horticulture. Scientia Horticulturae 196: 66–81.

    CAS  Google Scholar 

  85. Schmidhuber, J., and F.N. Tubiello. 2007. Global food security under climate change. Proceeding of the National Academy of Sciences USA 104: 19703–19708.

    CAS  Google Scholar 

  86. Siddiqui, M.H., M.H. Al-Whaibi, M. Faisal, and A.A. Al-Sahli. 2014. Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environmental Toxicology and Chemistry 33: 2429–2437.

    CAS  PubMed  Google Scholar 

  87. Song, Z., S. Zhao, Y. Zhang, G. Hu, Z. Cao, and M. Wong. 2011. Plant impact on CO2 consumption by silicate weathering: the role of bamboo. The Botanical Review 77: 208–213.

    Google Scholar 

  88. Srivastava, P., and R. Kumar. 2015. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences 22: 123–131.

    Google Scholar 

  89. Thangavelu, S., and K.C. Rao. 2002. Uptake of silicon in sugarcane genetic stocks and its association with the uptake of other nutrients and cane and sugar yield. Indian Sugar 51: 859–864.

    Google Scholar 

  90. United Nations (2019) World Population Prospects: Highlights. https://www.un.org/development/desa/publications/world-population-prospects-2019 highlights.html.

  91. Veatch-Blohm, M.E. 2007. Principles of plant genetics and breeding. Crop Science 47: 1763–1763.

    Google Scholar 

  92. Verma, K.K., R.K. Singh, Q.Q. Song, P. Singh, B.Q. Zhang, X.P. Song, G.L. Chen, and Y.R. Li. 2019b. Silicon alleviates drought stress of sugarcane plants by improving antioxidant responses. Biomed J. Sci. Tech. Res. MS. ID. 002957. DOI: 10.26717/BJSTR. 2019. 17.002957

  93. Verma, K.K., K.C. Wu, P. Singh, M.K. Malviya, R.K. Singh, X.P. Song, and Y.R. Li. 2019. The protective role of silicon in sugarcane under water stress: photosynthesis and antioxidant enzymes. BioMedical Journal of Scientific and Technical Research 15 (2): 002685. https://doi.org/10.26717/BJSTR.2019.15.002685.

    Article  Google Scholar 

  94. Verma, K.K., X.H. Liu, K.C. Wu, R.K. Singh, Q.Q. Song, M.K. Malviya, X.-P. Song, P. Singh, C.L. Verma, and Y.R. Li. 2019. The impact of silicon on photosynthetic and biochemical responses of sugarcane under different soil moisture levels. Silicon. https://doi.org/10.1007/s12633-019-00228-z.

    Article  Google Scholar 

  95. Wahid, A., and A. Ghazanfar. 2006. Possible involvement of some secondary metabolites in salt tolerance of sugarcane. Journal of Plant Physiology 163: 723–730.

    CAS  PubMed  Google Scholar 

  96. Wahid, A., and T. Close. 2007. Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biologia Plantarum 51: 104–109.

    CAS  Google Scholar 

  97. Wang, M., L. Gao, S. Dong, Y. Sun, Q. Shen, and S. Guo. 2017. Role of silicon on plantpathogen interactions. Frontiers in Plant Science 8: 701.

    PubMed  PubMed Central  Google Scholar 

  98. Wilkinson, S., and W.J. Davies. 2010. Drought, ozone, ABA and ethylene: new insights from cell to plant community. Plant Cell and Environment 33: 510–525.

    CAS  Google Scholar 

  99. Yadav, D.V., R. Jain, and R.K. Rai. 2010. Impact of heavy metals on sugarcane. Soil Heavy Metals 19: 339–367.

    CAS  Google Scholar 

  100. Zhang, S.Z., B.P. Yang, C.L. Feng, R.K. Chen, J.P. Luo, W.W. Cai, and F.H. Liu. 2006. Expression of the Grifola frondosa trehalose synthase gene and improvement of drought-tolerance in sugarcane (Saccharum officinarum L.). Journal of Integrated Plant Biology 48: 453–459.

    CAS  Google Scholar 

  101. Zhao, D., and Y. Li. 2015. Climate change and sugarcane production: potential impact and mitigation strategies. International Journal of Agronomy. https://doi.org/10.1155/2015/547386.

    Article  Google Scholar 

  102. Zhu, Y., and H. Gong. 2014. Beneficial effects of silicon on salt and drought tolerance in plants. Agronomy for Sustainable Development 34: 455–472.

    CAS  Google Scholar 

  103. Zhu, Z., G. Wei, J. Li, Q. Qian, and J. Yu. 2004. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sciences 167: 527–533.

    CAS  Google Scholar 

Download references

Acknowledgements

We wish to warmly thank to Guangxi Academy of Agricultural Sciences (GXAAS), Nanning, Guangxi, China, for providing the necessary facilities for this study. This study was supported in part by the Guangxi R&D Program Fund (GK17195100), Fund for Guangxi Innovation Teams of Modern Agriculture Technology (gjnytxgxcxtd-03–01) and Fund of Guangxi Academy of Agricultural Sciences (2015YT02).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xiu-Peng Song or Yang-Rui Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Verma, K.K., Singh, P., Song, XP. et al. Mitigating Climate Change for Sugarcane Improvement: Role of Silicon in Alleviating Abiotic Stresses. Sugar Tech 22, 741–749 (2020). https://doi.org/10.1007/s12355-020-00831-0

Download citation

Keywords

  • Abiotic stresses
  • Plant nutrition
  • Silicon
  • Stress reliever
  • Saccharum spp.