Electricity Production and Bioremediation from Synthetic Sugar Industry Wastewater by Using Microbial Isolate in Microbial Fuel Cell

Abstract

This study was based on simultaneous electricity production and bioremediation of synthetic sugar industry wastewater using microbial fuel cells (MFC). Electrogenic microbial source was obtained from a sugar industry wastewater treatment plant. The electrogenic strain was identified as Bacillus cereus according to its biochemical and molecular characteristics. A completely randomized experimental design (open circuit and 1 K, 220 and 50 Ω) was conducted to evaluate the chemical oxygen demand (COD) removal, coulombic efficiency (CE) and power density. The experimental results demonstrated that the B. cereus can use sucrose as an electron donor to generate electricity. At pH 7.0, the MFC generated an open-circuit voltage of 539 ± 22 mV. The maximum CE of 19.44 ± 1.93% and power density of 185.90 mW m−2 were obtained with an external resistance of 50 Ω, while the COD removal was 70%. The maximum COD removal (82%) and a power density of 121.39 ± 2.12 mW m−2 were obtained in the MFC connected to an external resistance of 220 Ω. These results demonstrate that an MFC powered with indigenous B. cereus can be used for simultaneous wastewater bioremediation and electricity production but is dependent on the external resistance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Anupama, S., N.V. Pradeep, and U.S. Hampannavar. 2013. Anaerobic followed by aerobic treatment approaches for spent wash using MFC and RBC. Sugar Tech 15(2): 197–202.

    CAS  Article  Google Scholar 

  2. APHA. 1998. Standard Methods for the Examination of Water and Wastewater, 20th ed. Washington DC, USA: American Public Health Association/American water works Association/Water environment federation.

    Google Scholar 

  3. APHA/AWWA/WEF. 2012. 9060 Samples. Standard Methods for the Examination of Water and Wastewater. 22nd edition. American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DC.

  4. Baranitharan, E., M.R. Khan, D.M.R. Prasad, W.F.A. Teo, G.Y.A. Tan, and R. Jose. 2015. Effect of biofilm formation on the performance of microbial fuel cell for the treatment of palm oil mil effluent. Bioprocess and Biosystems Engineering 38: 15–24.

    CAS  PubMed  Article  Google Scholar 

  5. Berenjian, A., C.N. Li-Cheng, R. Mahanama, A. Talbot, J.K. Regtop, and F. Dehghani. 2013. Effect of Biofilm Formation by Bacillus subtilis natto on Menaquinone-7 Biosynthesis. Molecular Bioechnology 54: 371–378.

    CAS  Google Scholar 

  6. Bhatnagar, A., K.K. Kesari, and N. Shurpali. 2016. Multidisciplinary approaches to handling wastes in sugar industries. Water, Air, and Soil pollution 227: 11.

    Article  Google Scholar 

  7. Bond, D.R., and D.R. Lovley. 2003. Electricity production by Geobacter sulfurreducens attached to electrodes. Applied and Environmental Microbiology 69(3): 1548–1555.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. Cai, W.F., J.F. Geng, K.B. Pu, Q. Ma, D.W. Jing, Y.H. Wang, Q.Y. Chen, and H. Liu. 2018. Investigation of a two-dimensional model on microbial fuel cell with different biofilm porosities and external resistances. Chemical Engineering Journal 333: 572–582.

    CAS  Article  Google Scholar 

  9. Cheremisinoff, N.P. 2002. An overview of water and waste-water treatment. In Handbook of Water and Wastewater Treatment Technologies, 1-61. USA: Butterworth-Heinemann/Elsevier. https://doi.org/10.1016/B978-075067498-0/50004-8.

  10. Comte, S., G. Guibaud, and M. Baudu. 2006. Biosorption properties of extracellular polymeric substances (EPS) resulting from activated sludge according to their type: Soluble or bound. Process Biochemistry 41(4): 815–823.

    CAS  Article  Google Scholar 

  11. Doran, P.M. 2013. Homogeneous Reactions. In Bioprocess Engineering principles. Second edition, 599–703. USA: Academic Press/Elsevier. https://doi.org/10.1016/B978-0-12-220851-5.00012-5.

  12. González, C.A., P. Cañizares, J. Lobato, M. Rodrigo, and F.J. Fernandez Morales. 2014. Effects of external resistance on microbial fuel cell’s performance. In Environment, Energy and Climate Change II, eds. Lefebvre G., E. Jiménez, and B. Cabañas. The Handbook of Environmental Chemistry 34: 175–197. Cham: Springer. https://doi.org/10.1007/698_2014_290.

  13. Gude, V.G. 2016. Microbial fuel cells for wastewater treatment and energy generation. In Microbial Electrochemical and Fuel Cells Fundamentals and Applications, eds. Keith Scott, and E. H. Yu, 247–285. UK: Woodhead Publishing/Elsevier. https://doi.org/10.1016/B978-1-78242-375-1.00008-3.

  14. He, C.S., Z.X. Mu, H.Y. Yang, Y.Z. Wang, Y. Mu, and H.Q. Yu. 2015. Electron acceptors for energy generation in microbial fuel cells fed with wastewaters: A mini-review. Chemosphere 140: 12–17.

    CAS  PubMed  Article  Google Scholar 

  15. Huarachi-Olivera, R., A. Dueñas-Gonza, U. Yapo-Pari, P. Vega, M. Romero-Ugarte, J. Tapia, L. Molina, A. Lazarte-Rivera, D.G. Pacheco-Salazar, and M. Esparza. 2018. Bioelectrogenesis with microbial fuel cells (MFCs) using microalga Chlorella vulgaris and bacterial communities. Electronic Journal of Biotechnology 31: 34–43.

    CAS  Article  Google Scholar 

  16. Jung, S., and J.M. Regan. 2011. Influence of external resistance on electrogenesis, methano-genesis, and anode prokaryotic communities in microbial fuel cells. Applied Environmental Microbiology 77(2): 564–571.

  17. Kumar, S. 2012. Texbook of Microbiology, 1st ed. New Delhi: Jaypee Brother Medical Publishers.

    Google Scholar 

  18. Lembre, P., C. Lorentz, and P.D. Martino. 2012. Exopolysaccharides of the Biofilm Matrix: A Complex Biophysical World. The Complex World of Polysaccharides: InTechOpen. https://doi.org/10.5772/51213.

    Google Scholar 

  19. Liu, M., Y. Yuan, X.L. Zhang, L. Zhuang, S.G. Zhou, and J.R. Ni. 2010. Bioelectricity generation by a Gram-positive Corynebacterium sp. strain MFC03 under alkaline condition in microbial fuel cells. Bioresource Technology 101(6): 1807-1811.

  20. Logan, B.E., B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, and K. Rabaey. 2006. Microbial fuel cells: Methodology and technology. Environmental Science Technology 40(17): 5181–5192.

    CAS  PubMed  Article  Google Scholar 

  21. Lovley, D.R. 2008. The microbe electric: conversion of organic matter to electricity. Current Opinion in Biotechnology 19 (6): 564–571.

    CAS  PubMed  Article  Google Scholar 

  22. Luo, J., M. Li, M. Zhou, and Y. Hu. 2015. Characterization of a novel strain phylogenetically related to Kocuria rhizophila and its chemical modification to improve performance of microbial fuel cells. Biosensors & Bioelectronics 69: 113–120.

    CAS  Article  Google Scholar 

  23. Madani, S., R. Gheshlaghi, M.A. Mahdavi, M. Sobhani, and A. Elkamel. 2015. Optimization of the performance of a double-chamber microbial fuel cell through factorial design of experiments and response surface methodology. Fuel 150: 434–440.

    CAS  Article  Google Scholar 

  24. Madigan, M.T., K.S. Bender, D.H. Buckle, W.M. Sattley, and D.A. Stahl. 2017. Brock Biology of Microorganisms. 15th ed. NY: Pearson.

    Google Scholar 

  25. Minitab 19 Ver. 19.1.0.0. Statistical Software (2019). Minitab, LLC. (www.minitab.com).

  26. Nimje, V.R., C.Y. Chen, C.C. Chen, J.S. Jean, A.S. Reddy, C.W. Fan, K.Y. Pan, H.T. Liu, and J.L. Chen. 2009. Stable and high energy generation by a strain of bacillus subtilis in a microbial fuel cell. Journal of Power Sources 190(2): 258–263.

    CAS  Article  Google Scholar 

  27. Pandey, P., V.N. Shinde, R.L. Deopurkar, S.P. Kale, S.A. Patil, and D. Pant. 2016. Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Applied Energy 168: 706–723.

    CAS  Article  Google Scholar 

  28. Parot, S., M.L. Délia, and A. Bergel. 2008. Forming electrochemically active biofilms from garden compost under chronoamperometry. Bioresource Technology 99(11): 4809–4816.

    CAS  PubMed  Article  Google Scholar 

  29. Porwal, H.J., A.V. Mane, and S.G. Velhal. 2015. Biodegradation of dairy effluent by using microbial isolates obtained from activated sludge. Water Resources and Industry 9: 1–15.

    Article  Google Scholar 

  30. Pradeep, N.V., S. Anupama, J.M. Arun Kumar, K.G. Vidyashree, P. Laskhmi, K. Ankitha, and J. Pooja. 2014. Treatment of Sugar Industry Wastewater in Anaerobic Downflow Stationary Fixed Film (DSFF) Reactor. Sugar Tech 16: 9–14.

    CAS  Article  Google Scholar 

  31. Rabaey, K., and W. Verstraete. 2005. Microbial fuel cells: Novel biotechnology for energy generation. Trends in Biotechnology 23(6): 291–298.

    CAS  PubMed  Article  Google Scholar 

  32. Schleifer, K.H. 2009. Phylum XIII. Firmicutes Gibbons and Murray 1978, 5 (Firmacutes [sic] Gibbons and Murray 1978, 5). In Bergey’s Manual of Systematic Bacteriology, eds. Vos P., G. Garrity, D. Jones, N.R. Krieg, W. Ludwig, F.A. Rainey, K.H. Schleifer and W. Whitman, 19-1317. NY: Springer. https://doi.org/10.1007/978-0-387-68489-5_3.

  33. Sharma, B., A.K. Dangi, and P. Shukla. 2018. Contemporary enzyme based technologies for bioremediation: A review. Journal of Environmental Management 210: 10–22.

    CAS  PubMed  Article  Google Scholar 

  34. Singh, A.K., X. Sun, X. Bai, H. Kim, M.U. Abdalhaseib, E. Bae, and A.K. Bhunia. 2015. Label-free, non-invasive light scattering sensor for rapid screening of Bacillus colonies. Journal of Microbiological Methods 109: 56–66.

    CAS  PubMed  Article  Google Scholar 

  35. Tao, Q., J. Luo, J. Zhou, S. Zhou, G. Liu, and R. Zhang. 2014. Effect of dissolved oxygen on nitrogen and phosphorus removal and electricity production in microbial fuel cell. Bioresource Technology 164: 402–407.

    CAS  PubMed  Article  Google Scholar 

  36. Vilajeliu-Pons, A., S. Puig, N. Pous, I. Saceldo-Dávila, L. Bañeras, M.D. Balaguer, and J. Colprim. 2015. Microbiome characterization of MFCs used for the treatment of swine manure. Journal of Hazardous Materials 288: 60–68.

    CAS  PubMed  Article  Google Scholar 

  37. Wang, Z., T. Lee, B. Lim, C. Choi, and J. Park. 2014. Microbial community structures differentiated in a single-chamber air-cathode microbial fuel cell fueled with rice straw hydrolysate. Biotechnology for Biofuels 7: 1–9.

    Article  Google Scholar 

  38. Wingender, J., T.R. Neu, and H.C. Flemming. 1999. Microbial Extracellular Polymeric Substances. Berlin: Springer. https://doi.org/10.1007/978-3-642-60147-7.

    Google Scholar 

  39. Zhang, H., Y. Tian, J. Wan, and P. Zhao. 2015. Study of biofilm influenced corrosion on cast iron pipes in reclaimed water. Applied Surface Science 357: 236–247.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was supported by projects SEP-CONACYT-239590. We thank Ing. Francisco Cerino Frías María, Alejandra Castellanos Hernández and Johany Kristhell Silvan Lara for technical assistance at biotech laboratory. We thank Nanotech laboratory at Cimav-Chihuahua for letting us use electron microscope.

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Martínez-Pereyra.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest in the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Córdova-Bautista, Y., Ramírez-Morales, E., Pérez-Hernández, B. et al. Electricity Production and Bioremediation from Synthetic Sugar Industry Wastewater by Using Microbial Isolate in Microbial Fuel Cell. Sugar Tech 22, 820–829 (2020). https://doi.org/10.1007/s12355-020-00830-1

Download citation

Keywords

  • Microbial fuel cell
  • B. cereus
  • Bioremediation
  • COD removal