Phenolic Profile of Cane Sugar Derivatives Exhibiting Antioxidant and Antibacterial Properties

Abstract

Health beneficial effects of sugarcane have been attributed to antioxidant components present in the plant material, phenolic compounds having been identified mainly in the raw juice, culms and leaves. However, the presence of specific natural phenolic constituents in non-refined cane sugars and their potential impact on the diet as an alternative to refined sugar have not been completely evaluated. Phenolic constituents of six commercially available sugarcane derivatives (granulated jaggery, muscovado sugar, light and regular jaggery blocks, cane honey and brown sugar) were identified and quantified, in addition to their physicochemical, antioxidant and antimicrobial properties against cariogenic bacteria. Physicochemical and antioxidant properties of raw sugars were highly related to degree of refining of each product. Specific hydroxycinnamic acids (chlorogenic, caffeic, coumaric, ferulic) and flavones (apigenin, tricin, luteolin) were identified and quantified in sugarcane products. Tricin and apigenin were the most abundant phenolics in raw sugars, both considered important bioactive constituents of foods which postulate as nutraceuticals, antiproliferative and chemopreventive agents. Some derivatives and their extracts also exhibited antibacterial properties against Streptococcus mutans and Streptococcus sobrinus. Bioactive compounds identified in raw sugars make sugarcane natural sweeteners a healthier alternative to white sugar, to be used at home and industry. Granulated jaggeries postulate as the best substitutive due to their nutritional benefits and physicochemical attributes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abbas, Syed Rizwan, Syed M. Sabir, Syed D. Ahmad, Aline A. Boligond, and Margareth L. Athayde. 2014. Phenolic profile, antioxidant potential and DNA damage protecting activity of sugarcane (Saccharum officinarum). Food Chemistry 147: 10–16. https://doi.org/10.1016/j.foodchem.2013.09.113.

    CAS  Article  PubMed  Google Scholar 

  2. Akuzawa, Kazuhiko, Rie Yamada, Zhuan Li, Ying Li, Hidetaka Sadanari, Keiko Matsubara, Kunitomo Watanabe, Mamoru Koketsu, Yuuzo Tuchida, and Tsugiya Murayama. 2011. Inhibitory effects of tricin derivative from Sasa albo-marginata on replication of human cytomegalovirus. Antiviral Research 91(3): 296–303. https://doi.org/10.1016/j.antiviral.2011.06.014.

    CAS  Article  PubMed  Google Scholar 

  3. Al-Fayez, Mohammad, Hong Cai, Richard Tunstall, William P. Steward, and Andreas J. Gescher. 2006. Differential modulation of cyclooxygenase-mediated prostaglandin production by the putative cancer chemopreventive flavonoids tricin, apigenin and quercetin. Cancer Chemotherapy and Pharmacology 58(6): 816–825. https://doi.org/10.1007/s00280-006-0228-3.

    CAS  Article  PubMed  Google Scholar 

  4. Alves, Vanessa G., Alan G. Souza, Lucas U.R. Chiavelli, Ana L.T.G. Ruiz, Joao E. Carvalho, Armando M. Pomini, and Cleuza C. Silva. 2016. Phenolic compounds and anticancer activity of commercial sugarcane cultivated in Brazil. Anais da Academia Brasileira de Ciencias 88(3): 1201–1209. https://doi.org/10.1590/0001-3765201620150349.

    CAS  Article  PubMed  Google Scholar 

  5. Amer, Said, Ki-Jeong Na, Moshira El-Abasy, Maki Motobu, Yukari Koyama, Kenji Koge, and Yoshikazu Hirota. 2004. Immunostimulating effects of sugar cane extract on X-ray radiation induced immunosuppression in the chicken. International Immunopharmacology 4(1): 71–77. https://doi.org/10.1016/j.intimp.2003.10.006.

    CAS  Article  PubMed  Google Scholar 

  6. Brand-Williams, Wendy, Marie-Elisabeth Cuvelier, and Claudette Berset. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology 28(1): 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5.

    CAS  Article  Google Scholar 

  7. Cai, Hong, E. Ann Hudson, Patricia R. Mann, Richard D. Verschoyle, Peter Greaves, Margaret M. Manson, William P. Steward, and Andreas J. Gescher. 2004. Growth-inhibitory and cell cycle-arresting properties of the rice bran constituent tricin in human-derived breast cancer cells in vitro and in nude mice in vivo. British Journal of Cancer 91(7): 1364–1371. https://doi.org/10.1038/sj.bjc.6602124.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Cai, Hong, David J. Boocock, William P. Steward, and Andreas J. Gescher. 2007. Tissue distribution in mice and metabolism in murine and human liver of apigenin and tricin, flavones with putative cancer chemopreventive properties. Cancer Chemotherapy and Pharmacology 60(2): 257–266. https://doi.org/10.1007/s00280-006-0368-5.

    CAS  Article  PubMed  Google Scholar 

  9. Chiang, Lien-Chai, Teik Ng Lean, I-Cheng Lin, Po-Lin Kuo, and Chun-Ching Lin. 2006. Anti-proliferative effect of apigenin and its apoptotic induction in human Hep G2 cells. Cancer Letters 237(2): 207–214. https://doi.org/10.1016/j.canlet.2005.06.002.

    CAS  Article  PubMed  Google Scholar 

  10. Chitnis, R., M. Abichandani, P. Nigam, L. Nahar, and S.D. Sarker. 2007. Actividad antibacteriana y antioxidante de los extractos de Piper cubeba (Piperaceae): Antioxidant and antibacterial activity of the extracts of Piper cubeba (Piperaceae). Ars Pharmaceutica 48(4): 343–350.

    Google Scholar 

  11. Colombo, Renata, Fernando M. Lanças, and Janette H. Yariwake. 2006. Determination of flavonoids in cultivated sugarcane leaves, bagasse, juice and in transgenic sugarcane by liquid chromatography-UV detection. Journal of Chromatography A 1103(1): 118–124. https://doi.org/10.1016/j.chroma.2005.11.007.

    CAS  Article  PubMed  Google Scholar 

  12. Cushnie, T.P.Tim, and Andew J. Lamb. 2011. Recent advances in understanding the antibacterial properties of flavonoids. International Journal of Antimicrobial Agents 38(2): 99–107. https://doi.org/10.1016/j.ijantimicag.2011.02.014.

    CAS  Article  PubMed  Google Scholar 

  13. de los Mosquera, Tatiana Ángeles, and Teresa Melania Veloz Vera. 2011. Eficacia in vitro de un colutorio elaborado con aceite esencial de la hoja de ishpingo Ocotea quixos (Lam.) Kostern. Ex O.C.Schmidt y clavo de olor Syzygium aromaticum (L.) Merr. & L.M. Perry. La Granja 13(1): 31–41. https://doi.org/10.17163/lgr.n13.2011.04. (in Spanish).

    Article  Google Scholar 

  14. De Whalley, H.C.S. 1964. ICUMSA methods of sugar analysis. Amsterdam: Elsevier.

    Google Scholar 

  15. Duarte-Almeida, Joaquim Mauricio, Alexis Vidal Novoa, Adyary Fallarero Linares, Franco M. Lajolo, and Maria Inés Genovese. 2006. Antioxidant activity of phenolics compounds from sugar cane (Saccharum officinarum L.) juice. Plant Foods for Human Nutrition 61: 187–192. https://doi.org/10.1007/s11130-006-0032-6.

    CAS  Article  Google Scholar 

  16. Duarte-Almeida, Joaquim Mauricio, Giuseppina Negri, Antonio Salatino, João Ernesto de Carvalho, and Franco M. Lajolo. 2007. Antiproliferative and antioxidant activities of a tricin acylated glycoside from sugarcane (Saccharum officinarum) juice. Phytochemistry 68(8): 1165–1171. https://doi.org/10.1016/j.phytochem.2007.01.015.

    CAS  Article  PubMed  Google Scholar 

  17. Duarte-Almeida, Joaquim Mauricio, Antonio Salatino, Maria Inés Genovese, and Franco M. Lajolo. 2011. Phenolic composition and antioxidant activity of culms and sugarcane (Saccharum officinarum L.) products. Food Chemistry 125(2): 660–664. https://doi.org/10.1016/j.foodchem.2010.09.059.

    CAS  Article  Google Scholar 

  18. El-Abasy, Moshira, Maki Motobu, Ki-Jeong Na, Kameo Shimura, Kikuyasu Nakamura, Kenji Koge, Takashi Onodera, and Yoshikazu Hirota. 2003. Protective effects of sugar cane extracts (SCE) on Eimeria tenella infection in chickens. Journal of Veterinary Medical Science 65(8): 865–871. https://doi.org/10.1292/jvms.65.865.

    Article  PubMed  Google Scholar 

  19. El-Abasy, Moshira, Maki Motobu, Kikuyasu Nakamura, Kenji Koge, Takashi Onodera, Olli Vainio, Paavo Toivanen, and Yoshikazu Hirota. 2004. Preventive and therapeutic effects of sugar cane extract on cyclophosphamide-induced immunosuppression in chickens. International Immunopharmacology 4(8): 983–990. https://doi.org/10.1016/j.intimp.2004.01.019.

    CAS  Article  PubMed  Google Scholar 

  20. Guerra, Marisa J., and María V. Mujica. 2010. Physical and chemical properties of granulated cane sugar “panelas”. Ciência e Tecnologia de Alimentos 30(1): 250–257. https://doi.org/10.1590/S0101-20612010005000012.

    Article  Google Scholar 

  21. Guimarães, Carla M., Maria S. Gião, Sidónia S. Martínez, Ana I. Pintado, Manuela E. Pintado, Luis S. Bento, and F. Xabier Malcata. 2007. Antioxidant activity of sugar molasses, including protective effect against DNA oxidative damage. Journal of Food Science 72(1): 39–43. https://doi.org/10.1111/j.1750-3841.2006.00231.x.

    CAS  Article  Google Scholar 

  22. Hudson, E., P.Ann Ann, Tetsuo Kokubun Dinh, Monique S.J. Simmonds, and Andreas Gescher. 2000. Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells. Cancer Epidemiology, Biomarkers and Prevention 9(11): 1163–1170.

    CAS  PubMed  Google Scholar 

  23. Jaffé, Walter R. 2012. Health effects of non-centrifugal sugar (NCS): A review. Sugar Tech 14(2): 87–94. https://doi.org/10.1007/s12355-012-0145-1.

    CAS  Article  Google Scholar 

  24. Jaganathan, Saravana Kumar, and Mahitosh Mandal. 2009. Antiproliferative effects of honey and of its polyphenols: A review. Journal of Biomedicine and Biotechnology 830616: 13. https://doi.org/10.1155/2009/830616.

    CAS  Article  Google Scholar 

  25. Jenkins, G.Neil. 1970. Enamel protective factors in food. Journal of Dental Research 49(6): 1318–1325. https://doi.org/10.1177/00220345700490062501.

    CAS  Article  PubMed  Google Scholar 

  26. Johnson, Jodee L., and Elvira Gonzalez de Mejia. 2013. Interactions between dietary flavonoids apigenin or luteolin and chemotherapeutic drugs to potentiate anti-proliferative effect on human pancreatic cancer cells, in vitro. Food and Chemical Toxicology 60: 83–91. https://doi.org/10.1016/j.fct.2013.07.036.

    CAS  Article  PubMed  Google Scholar 

  27. Kadam, Ulhas S., Sukhendu B. Ghosh, Strayo Agarwal, Suprasanna Penna, T.P.A. Devasagayam, and Vishwas A. Bapat. 2008. Antioxidant activity in sugarcane juice and its protective role against radiation induced DNA damage. Food Chemistry 106(3): 1154–1160. https://doi.org/10.1016/j.foodchem.2007.07.066.

    CAS  Article  Google Scholar 

  28. Koge, Kenji, Yukie Nagai, Takeo Mizutani, Mamoru Suzuki, and Seiichi Araki. 2001. Inhibitory effects of sugar cane extracts on liver injuries in mice. Journal of the Japanese Society for Food Science and Technology 48(4): 231–237. https://doi.org/10.3136/nskkk.48.231.

    Article  Google Scholar 

  29. Lee, Jong Suk, Srinivasan Ramalingam, Il Guk Jo, Ye Som Kwon, Ashutosh Bahuguna, Oh Young Sook, O-Jun Kwon, and Myunghee Kim. 2018. Comparative study of the physicochemical, nutritional, and antioxidant properties of some commercial refined and non-centrifugal sugars. Food Research International 109: 614–625. https://doi.org/10.1016/j.foodres.2018.04.047.

    CAS  Article  PubMed  Google Scholar 

  30. Lo, Dan-Yuan, Ter Hsiin Chen, Maw-Sheng Chien, Kenji Koge, Akira Hosono, Shuichi Kaminogawa, and Wei-Cheng Lee. 2005. Effects of sugar cane extract on the modulation of immunity in pigs. Journal of Veterinary Medical Science 67(6): 591–597. https://doi.org/10.1292/jvms.67.591.

    Article  PubMed  Google Scholar 

  31. Luximon-Ramma, Amitabye, Theeshan Bahorun, Mohammed A. Soobrattee, and Okezie I. Aruoma. 2002. Antioxidant activities of phenolic, proanthocyanidin, and flavonoid components in extracts of Cassia fistula. Journal of Agricultural and Food Chemistry 50(18): 5042–5047. https://doi.org/10.1021/jf0201172.

    CAS  Article  PubMed  Google Scholar 

  32. Moniruzzaman, Shahinuzzaaman, Ahsanul Haque, Rahima Khatun, and Zahira Yaakob. 2015. Gas chromatography mass spectrometry analysis and in vitro antibacterial activity of essential oil from Trigonella foenum-graecum. Asian Pacific Journal of Tropical Biomedicine 5(12): 1033–1036. https://doi.org/10.1016/j.apjtb.2015.09.010.

    CAS  Article  Google Scholar 

  33. Motobu, Maki, Said Amer, Yukari Koyama, Kenji Hikosaka, Toshiya Sameshima, Manabu Yamada, Kikuyasu Nakamura, Kenji Koge, Chung-Boo Kang, Hideki Hayasidani, and Yoshikazu Hirota. 2006. Protective effects of sugar cane extract on endotoxic shock in mice. Phytotherapy Research 20(5): 359–363. https://doi.org/10.1002/ptr.1860.

    Article  PubMed  Google Scholar 

  34. Mujica, María Virginia, Marisa Guerra, and Naudy Soto. 2008. Effect of cane variety, washing and endpoint temperature on the quality of granulated “panela” sugarcane: Efecto de la variedad, lavado de la caña y temperatura de punteo sobre la calidad de la panela granulada. Interciencia 33(8): 598–603.

    Google Scholar 

  35. Murkovic, M. 2003. Phenolic compounds (Hydroxicinammic acids). In Encyclopedia of food sciences and nutrition, 2nd ed, ed. Benjamin Caballero, 4507–4514. Cambridge, Massachussets: Academic Press. https://doi.org/10.1016/B0-12-227055-X/00914-7.

    Google Scholar 

  36. Nayaka, Mysore A.Harish, Upparahalli V. Sathisha, M.P. Manohar, K.B. Chandrashekar, and Shylaja M. Dharmesh. 2009. Cytoprotective and antioxidant activity studies of jaggery sugar. Food Chemistry 115(1): 113–118. https://doi.org/10.1016/j.foodchem.2008.11.067.

    CAS  Article  Google Scholar 

  37. Noa, Miriam, Sarahi Mendoza, Rosa Mas, and Nora Aguilar Mendoza. 2002. Effect of D-003, a mixture of high molecular weight primary acids from sugar cane wax, on CL4C-induced liver acute injury in rats. Drugs Under Experimental and Clinical Research 28(5): 177–183. https://doi.org/10.1016/S0188-4409(00)00265-4.

    CAS  Article  PubMed  Google Scholar 

  38. OECD/FAO. 2018. OECD-FAO Agricultural Outlook. OECD Agriculture Statistics. Retrieved from https://www.oecd-ilibrary.org/agriculture-and-food/data/oecd-agriculture-statistics_agr-data-en.

  39. Osborn, T.W.B., J.N. Noriskin, and J. Staz. 1937a. A comparison of crude and refined sugar and cereals in their ability to produce in vitro decalcification of teeth. Journal of Dental Research 16(13): 165–171. https://doi.org/10.1177/00220345370160030201.

    Article  Google Scholar 

  40. Osborn, T.W.B., J.N. Noriskin, and J. Staz. 1937b. Inhibition in vitro of decalcification in teeth. Journal of Dental Research 16(6): 545–550. https://doi.org/10.1177/00220345370160060801.

    Article  Google Scholar 

  41. Payet, Bertrand, Alain Shum Chong Sing, and Jacqueline Smadja. 2005. Assessment of antioxidant activity of cane browns sugars by ABTS and DPPH radical scavenging assays: Determination of their polyphenolic and volatile constituents. Journal of Agricultural and Food Chemistry 53(26): 10074–10079. https://doi.org/10.1021/jf0517703.

    CAS  Article  PubMed  Google Scholar 

  42. Payet, Bertrand, Alain Shum Chong Sing, and Jacqueline Smadja. 2006. Comparison of the concentrations of phenolic constituents in cane sugar manufacturing products with their antioxidant activities. Journal of Agricultural and Food Chemistry 54(19): 7270–7276. https://doi.org/10.1021/jf060808o.

    CAS  Article  PubMed  Google Scholar 

  43. Re, Roberta, Nicoletta Pellegrini, Anna Proteggente, Ananth Pannala, Min Yang, and Catherine Rice-Evans. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 26(9–10): 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3.

    CAS  Article  PubMed  Google Scholar 

  44. Saska, Martin, B. Silvia Zossi, and Hua-liang Liu. 2010. Removal of colour in sugar cane juice clarification by defecation, sulfitation and carbonation. International Sugar Journal 112: 258–264.

    CAS  Google Scholar 

  45. Sato, Yoichi, Shiho Suzaki, Takako Nishikawa, Masaru Kihara, Hiromufi Shibata, and T. Tomihiko Higuti. 2000. Phytochemical flavones isolated from Scutellaria barbata and antibacterial activity against methicillin-resistant Staphylococcus aureus. Journal of Ethnopharmacology 72(3): 483–488. https://doi.org/10.1016/S0378-8741(00)00265-8.

    CAS  Article  PubMed  Google Scholar 

  46. Seguí, Lucía, Laura Calabuig-Jimenez, Noelia Betoret, and Pedro Fito. 2015. Physicochemical and antioxidant properties of non-refined sugarcane alternatives to white sugar. International Journal of Food Science & Technology 50(12): 2579–2588. https://doi.org/10.1111/ijfs.12926.

    CAS  Article  Google Scholar 

  47. Shuckla, Sanjeev, and Sanjay Gupta. 2010. Apigenin: A promising molecule for cancer prevention. Pharmaceutical Research 27(6): 962–978. https://doi.org/10.1007/s11095-010-0089-7.

    CAS  Article  Google Scholar 

  48. Singh, Amandeep. 2006. An investigation of the possible anticariogenic effect of raw sugarcane: An epidemiologic study of 12-year-old Punjabi Children, India. Panela Monitor Repository (panelamonitor.org). http://www.panelamonitor.org/documents/651/investigation-possible-anti-cariogenic-effects-raw/. Accessed July 2019.

  49. Singh, Amandeep, Uma Ranjan Lal, Hayat Muhammad Mukhtar, Prabh Simran Singh, Gagan Shah, and Ravi Khuman Dhawan. 2015. Phytochemical profile of sugarcane and its potential health aspects. Pharmacognosy Reviews 9(17): 45–54. https://doi.org/10.4103/0973-7847.156340.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Singleton, Vernon L., Rudolf Orthofer, and Rosa M. Lamuela-Raventós. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology 299: 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1.

    CAS  Article  Google Scholar 

  51. Soffritti, Morando, Fiorella Belpoggi, Davide Degli Esposti, Luca Lambertini, Eva Tibaldi, and Anna Rigano. 2006. First experimental demonstration of the multipotential carcinogenic effects of aspartame administered in the feed to Sprague-Dawley rats. Environmental Health Perspectives 114(3): 379–385. https://doi.org/10.1289/ehp.8711.

    CAS  Article  PubMed  Google Scholar 

  52. Takara, Kensaku, Kenji Ushijima, Koji Wada, Hironori Iwasaki, and Masatsugu Yamashita. 2007. Phenolic compounds from sugarcane molasses possessing antibacterial activity against cariogenic bacteria. Journal of Oleo Science 56(11): 611–614. https://doi.org/10.5650/jos.56.611.

    CAS  Article  PubMed  Google Scholar 

  53. Tanaka, Akinobu, Hyo Jung Kim, Shojiro Oda, Kuniyoshi Shimizu, and Ryuichiro Kondo. 2011. Antibacterial activity of moso bamboo shoot skin (Phyllostachys pubescens) against Staphylococcus aureus. Journal of Wood Science 57(6): 542–544. https://doi.org/10.1007/s10086-011-1207-9.

    CAS  Article  Google Scholar 

  54. Verschoyle, Richard D., Peter Greaves, Hong Cai, Arndt Borkardt, Massimo Broggini, Maurizio D’Incalci, Ed Riccio, Rupa Doppalapudi, Izet M. Kapetanovic, William P. Sterward, and Andreas J. Gescher. 2006. Preliminary safety evaluation of the putative cancer chemopreventive agent tricin, a naturally occurring flavone. Cancer Chemoteraphy and Pharmacology 57(1): 1–6. https://doi.org/10.1007/s00280-005-0039-y.

    CAS  Article  Google Scholar 

  55. Vila, Fabiana C., Renata Colombo, Tatiana O. de Lira, and Janete H. Yariwake. 2008. HPLC microfractionation of flavones and antioxidant (radical scavenging) activity of Saccharum officinarum L. Journal of the Brazilian Chemical Society 19(5): 903–908. https://doi.org/10.1590/S0103-50532008000500014.

    CAS  Article  Google Scholar 

  56. Wojtczak, Maciej, Anta Antczak-Chrobot, and Krystyna Lisik. 2013. Contamination of commercial cane sugars by some organic acids and some inorganic anions. Food Chemistry 136(1): 193–198. https://doi.org/10.1016/j.foodchem.2012.07.036.

    CAS  Article  PubMed  Google Scholar 

  57. Wolfe, Kelly, Wu Xian Zhong, and Rui Hai Liu. 2003. Antioxidant activity of apple peels. Journal of Agricultural and Food Chemistry 51(3): 609–614. https://doi.org/10.1021/jf020782a.

    CAS  Article  PubMed  Google Scholar 

  58. Yamauchi, Kohen, Tonglian Buwjoom, Kenji Koge, and Tadashi Ebashi. 2006. Histological intestinal recovery in chickens refed dietary sugar cane extract. Poultry Science 85(4): 645–651. https://doi.org/10.1093/ps/85.4.645.

    CAS  Article  PubMed  Google Scholar 

  59. Yazawa, Kurumi, Masahiko Kurokawa, Masatsugu Obuchi, Ying Li, Rie Yamada, Hidetaka Sadanari, Keiko Matsubara, Kunitomo Watanabe, Mamoru Koketsu, Yuuzo Tuchida, and Tsugiya Murayama. 2011. Anti-Influenza Virus Activity of Tricin, 4′,5,7-trihydroxy-3′,5′-dimethoxyflavone. Antiviral Chemistry & Chemotherapy 22(1): 1–11. https://doi.org/10.3851/IMP1782.

    CAS  Article  Google Scholar 

  60. Yoshimoto, M., R. Kurata, M. Fujii, and D.-X. Hou. 2008. In vitro and in vivo anticarcinogenesis of sugar cane vinegar. Acta Horticularae 765: 17–22. https://doi.org/10.17660/ActaHortic.2008.765.1.

    Article  Google Scholar 

  61. Zhou, Jian-Min, and Ragai K. Ibrahim. 2010. Tricin—A potential multifunctional nutraceutical. Phytochemistry Reviews 9(3): 413–424. https://doi.org/10.1007/s11101-009-9161-5.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Universitat Politècnica de València (UPV/PAID2010-2420) and Generalitat Valenciana (GV/2013/047). The authors would like to acknowledge both institutions for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lucía Seguí.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barrera, C., Betoret, N. & Seguí, L. Phenolic Profile of Cane Sugar Derivatives Exhibiting Antioxidant and Antibacterial Properties. Sugar Tech 22, 798–811 (2020). https://doi.org/10.1007/s12355-020-00817-y

Download citation

Keywords

  • Sugarcane
  • Non-refined sugars
  • Antioxidant
  • Hydroxycinnamic acids
  • Flavones
  • Anticariogenic