Skip to main content

Composting of Sweet Sorghum Bagasse and its Impact on Plant Growth Promotion

Abstract

The present study was carried out to optimize a protocol to rapidly decompose sweet sorghum bagasse and to evaluate the bagasse compost for plant growth promotion (PGP) in sweet sorghum. A total of ten cellulose-degrading microbes were screened for decomposing sweet sorghum bagasse, of which three (Myceliophthora thermophila ATCC 48104, Aspergillus awamori and Bacillus subtilis ATCC 6633) decomposed bagasse efficiently in 60 days. When these potential microbes were characterized for their in vitro PGP traits, all were found to produce indole acetic acid, cellulase, lipase (except M. thermophila) and siderophore (only A. awamori) and solubilize phosphorous (except M. thermophila). The bagasse compost prepared with the three microbes was evaluated for PGP on sweet sorghum under greenhouse conditions. The results showed that the bagasse compost prepared with potential microbes significantly and consistently enhanced PGP traits including the plant height (37–44%), leaf weight (63–81%), shoot weight (38–66%), root weight (87–89%), leaf area (75–83%) and root length (37–48%) at 35 days after sowing (DAS); shoot weight (40–58%) and root weight (24–38%) at 70 DAS; and shoot weight (30–46%), panicle weight (40–51%), seed number (20–62%) and seed weight (37–65%) at harvest over the bagasse compost prepared without microbes. Among the three potential strains, A. awamori and M. thermophila significantly and consistently enhanced all the PGP traits compared to B. subtilis. It is concluded that sweet sorghum bagasse can be decomposed rapidly and the bagasse compost prepared with microbes can be successfully used for PGP in sweet sorghum.

This is a preview of subscription content, access via your institution.

References

  1. Adebooye, O.C., and V. Singh. 2007. Effect of cooking on the profile of phenolics, tannins, phytate, amino acid, fatty acid and mineral nutrients of whole-grain and decorticated vegetable cowpea (Vigna unguiculata L. Walp). Journal of Food Quality 30: 1101–1120.

    CAS  Google Scholar 

  2. Aira, M., F. Monroy, and J. Dominguez. 2007. Earthworms strongly modify microbial biomass and activity triggering enzymatic activities during vermicomposting independently of the application rates of pig slurry. Science of the Total Environment 385: 252–261.

    CAS  PubMed  Google Scholar 

  3. Anderson, T.H., and K.H. Domsch. 1989. Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biology and Biochemistry 21: 471–479.

    Google Scholar 

  4. Anjaiah, V., N. Koedam, B. Nowak-Thompson, J.E. Loper, M. Hofte, J.T. Tambong, and P. Cornelis. 1998. Involvement of phenazines and anthranilate in the antagonism of Pseudomonas aeruginosa PNA1 and Tn5 derivative toward Fusarium spp. and Pythium spp. Molecular Plant-Microbe Interactions 11: 847–854.

    CAS  Google Scholar 

  5. AOAC. 2000. Official methods of analysis. 17th ed. Gaithersburg: Association of Official Analytical Chemists International.

    Google Scholar 

  6. Bhattacharya, A., S. Chandra, and S. Barik. 2009. Lipase and protease producing microbes from the environment of sugar beet field. Indian Journal of Agricultural Biochemistry 22: 26–30.

    CAS  Google Scholar 

  7. Brooks, P.C., A. Landman, G. Pruden, and D.S. Jenkinson. 1985. Chloroform fumigation and the release of soil nitrogen; a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry 17: 837–842.

    Google Scholar 

  8. Casida, L.E. 1977. Microbial metabolic activity in soil as measured by dehydrogenase determinations. Applied and Environmental Microbiology 34: 630–636.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Chakraborty, U., B.N. Chakraborty, M. Basnet, and A.P. Chakraborty. 2009. Evaluation of Ochrobactrum anthropi TRS-2 and its talc-based formulation for enhancement of growth of tea plants and management of brown root rot disease. Journal of Applied Microbiology 107: 625–634.

    CAS  PubMed  Google Scholar 

  10. Chakraborty, U., B.N. Chakraborty, A.P. Chakraborty, K. Sunar, and P.L. Dey. 2013. Plant growth-promoting rhizobacteria mediated improvement of health status of tea plants. Indian Journal of Biotechnology 12: 20–31.

    CAS  Google Scholar 

  11. Chander, G., S.P. Wani, S. Gopalakrishnan, A. Mahapatra, S. Chaudhury, C.S. Pawar, M. Kaushal, and A.V.R.K. Rao. 2018. Microbial consortium culture and vermicomposting technologies for recycling on-farm wastes and food production. Integrated Journal of Recycling of Organic Waste in Agriculture 7: 99–108.

    Google Scholar 

  12. De Bertoldi, M., G. Vallini, A. Pera, and F. Zucconi. 1985. Technological aspects of composting including modelling and microbiology. In Composting of agricultural and other wastes, ed. J.K.R. Gasser, 27–41. Barking, Essex: Elsevier Applied Science Publishers.

    Google Scholar 

  13. Ellis, R.J., T.M. Timms-Wilson, and M.J. Bailey. 2000. Identification of conserved traits in fluorescent Pseudomonads with antifungal activity. Environmental Microbiology 2: 274–284.

    CAS  PubMed  Google Scholar 

  14. Fiske, C.H., and Y. Subbaraow. 1925. A colorimetric determination of phosphorous. The Journal of Biological Chemistry 66: 375–400.

    CAS  Google Scholar 

  15. Fourti, O., N. Jedidi, and A. Hassen. 2011. Comparison of methods for evaluating stability and maturity of co-composting of municipal solid wastes and sewage sludge in semi-arid pedo-climatic condition. Natural Science 3: 124–135.

    CAS  Google Scholar 

  16. Gautam, S.P., P.S. Bundela, A.K. Pandey, M.K. Awasthi, and S. Sarsaiya. 2010. Composting of municipal solid waste of Jabalpur city. Global Journal of Environmental Research 4: 43–46.

    CAS  Google Scholar 

  17. Gopalakrishnan, S., S. Pande, M. Sharma, P. Humayun, B.K. Kiran, D. Sandeep, M.S. Vidya, K. Deepthi, and O. Rupela. 2011a. Evaluation of actinomycete isolates obtained from herbal vermicompost for biological control of Fusarium wilt of chickpea. Crop Protection 30: 1070–1078.

    CAS  Google Scholar 

  18. Gopalakrishnan, S., B.K. Kiran, P. Humayun, M.S. Vidya, D. Deepthi, and O. Rupela. 2011b. Biocontrol of charcoal-rot of sorghum by actinomycetes isolated from herbal vermicompost. African Journal of Biotechnology 10: 18142–18152.

    Google Scholar 

  19. Gopalakrishnan, S., V. Srinivas, B. Prakash, R. Vijayabharathi, and O. Rupela. 2014. Evaluation of Streptomyces strains isolated from herbal vermicompost for their plant growth-promotion traits in rice. Microbiological Research 169: 40–48.

    CAS  PubMed  Google Scholar 

  20. Gopalakrishnan, S., R. Vijayabharathi, A. Sathya, H.C. Sharma, V. Srinivas, R.K. Bhimineni, S.V. Gonzalez, T.M. Melø, and N. Simic. 2016a. Insecticidal activity of a novel fatty acid amide derivative from Streptomyces species against Helicoverpa armigera. Natural Product Research 30: 2760–2769.

    CAS  PubMed  Google Scholar 

  21. Gopalakrishnan, S., V. Srinivas, S. Srinivasan, and C.V. Sameer Kumar. 2016b. Plant growth-promotion and biofortification of chickpea and pigeonpea through inoculation of biocontrol potential bacteria, isolated from organic soils. SpringerPlus 5: 1882.

    PubMed  PubMed Central  Google Scholar 

  22. Grassi, G. 2001. Sweet sorghum—One of the best world food-feed-energy crop. Published by ETA Florence and WIP-Munich in the framework of LAMNET Thematic Network funded by the European Commission, DG Research, Programme “Confirming the international role of community research” (Project no. ICA4-CT-2001-10106).

  23. Haas, D., and G. Defago. 2005. Biological control of soil borne pathogens by fluorescent Pseudomonads. Nature Reviews Microbiology 3: 307–319.

    CAS  PubMed  Google Scholar 

  24. Haas, D., C. Keel, J. Laville, M. Maurhofer, T. Oberhansli, U. Schnider, C. Vosard, B. Wuthrich, and G. Defago. 1991. Secondary metabolites of Pseudomonas fluorescens strain CHAO involved in the suppression of root diseases. In Advances in molecular genetics of plant-microbe interactions, vol. I, ed. I.H. Hennecke and D.P.S. Verma, 450–456. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  25. Hefnawy, T.H. 2011. Effect of processing methods on nutritional composition and anti-nutritional factors in lentils (Lens culinaris). Annals of Agricultural Sciences 56: 57–61.

    Google Scholar 

  26. Hendricks, C.W., J.D. Doyle, and B. Hugley. 1995. A new solid medium for enumerating cellulose-utilizing bacteria in soil. Applied and Environmental Microbiology 61: 2016–2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hirano, S., and N. Nagao. 1988. An improved method for the preparation of colloidal chitin by using methane sulfonic acid. Agricultural and Biological Chemistry 52: 2111–2112.

    CAS  Google Scholar 

  28. Hughes, P.R., H.A. Wood, J.P. Breen, S.F. Simpson, A.J. Duggan, and J.A. Dybas. 1997. Enhanced bioactivity of recombinant baculoviruses expressing insect specific spider toxins in lepidopteran crop pests. Journal of Invertebrate Pathology 69: 112–118.

    CAS  PubMed  Google Scholar 

  29. Huligol, R. V., Ramakrishna, and G. Misale. 2004. A trial with sweet sorghum. CFC and ICRISAT. 2004. In Proceedings of the Alternative “Uses of Sorghum and Pearl Millet in Asia” Expert meeting, ICRISAT, Andhra Pradesh, India, 1–4 July 2003. CFC technical paper no. 34. PO Box 74656, 1070 BR Amsterdam, The Netherlands: Common Fund for Commodities; and Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics, 333–337.

  30. Khamna, S., A. Yokota, and S. Lumyoung. 2009. Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds indole-3-acetic acid and siderophore production. World Journal of Microbiology and Biotechnology 25: 649–655.

    CAS  Google Scholar 

  31. Kumar, C.G., P.S. Rao, S. Gupta, J. Malapaka, and A. Kamal. 2013. Enhancing the shelf life of sweet sorghum [Sorghum bicolor (L.) moench] juice through pasteurization while sustaining fermentation efficiency. Sugar Tech 15: 328–337.

    Google Scholar 

  32. Lynd, L.R., P.J. Weimer, Z.W.H. Van, and I.S. Pretorius. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews 66: 506–577.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lorck, H. 1948. Production of hydrocyanic acid by bacteria. Physiologiae Plantarum 1: 142–146.

    CAS  Google Scholar 

  34. Mishra, V., A.K. Jana, M.M. Jana, and A. Gupta. 2017. Fungal pretreatment of sweet sorghum bagasse with supplements: improvement in lignin degradation, selectivity and enzymatic saccharification. 3 Biotech 7: 110.

    PubMed  PubMed Central  Google Scholar 

  35. Meehnian, H., A.K. Jana, and M.M. Jana. 2016. Effect of particle size, moisture content and supplements on selective pretreatment of cotton stalks by Daedalea flavida and enzymatic saccharification. 3 Biotech 6: 235.

    PubMed  PubMed Central  Google Scholar 

  36. Nath, G., and K. Singh. 2009. Utilization of vermiwash potential on certain summer vegetable crops. Journal of Central European Agriculture 10: 417–426.

    Google Scholar 

  37. Negro, M.J., M.L. Solano, P. Ciria, and J. Carrasco. 1999. Composting of sweet sorghum bagasse with other wastes. Bioresource Technology 67: 89–92.

    CAS  Google Scholar 

  38. Novinsak, A., C. Surette, C. Allain, and M. Filion. 2008. Application of molecular technologies to monitor the microbial content of biosolids and composted biosolids. Water Science and Technology 57: 471–477.

    Google Scholar 

  39. Patten, C., and B.R. Glick. 2002. Role of Pseudomonas putida in indole acetic acid in development of the host plant root system. Applied and Environmental Microbiology 68: 3795–3801.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Perner, H., D. Schwarz, and E. George. 2006. Effect of mycorrhizal inoculation and compost supply on growth and nutrient uptake of young leek plants grown on peat-based substrates. Horticultural Science 4: 628–632.

    Google Scholar 

  41. Prakasham, R.S., P. Brahmaiah, D. Nagaiah, P.S. Rao, B.V.S. Reddy, R.S. Rao, and P. Hobbs. 2012. Impact of low lignin containing brown midrib sorghum mutants to harness biohydrogen production using mixed anaerobic consortia. International Journal of Hydrogen Energy 37: 3186–3190.

    CAS  Google Scholar 

  42. Ratanavathi, C.V., P.K. Biswass, M. Pallavi, M. Maheswari, B.S. Vijay Kumar, and N. Seetharama. 2004. Alternative uses of sorghum-methods and feasibility: Indian perspective. CFC and ICRISAT. In: Alternative uses of sorghum and pearl millet in Asia: proceedings of the Expert Meeting, ICRISAT, Andhra Pradesh, India, 1–4 July 2003.CFC technical paper no. 34. P.O. Box 74656, 1070 BR Amsterdam, The Netherlands: Common Fund for Commodities; and Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid tropics, 188–200.

  43. Rupela, O.P., B.S. Sidhu, S. Gopalakrishnan, S.K. Saini, and V. Beri. 1998. Preparation and evaluation of rice-straw compost. Paper presented at the 2nd research coordinated meeting of the FAO/IAEA coordinated research project on, “The use of nuclear techniques in the management of organic matter to enhance soil productivity and crop yields”, 20–24 April 1998, Vienna, Austria.

  44. Sathya, A., R. Vijayabharathi, V. Srinivas, and S. Gopalakrishnan. 2016. Plant growth-promoting actinobacteria on chickpea seed mineral density: An upcoming complementary tool for sustainable biofortification strategy. 3 Biotech 6: 138.

    PubMed  PubMed Central  Google Scholar 

  45. Sawargaonkar, G.L., S.P. Wani, M. Pavani, and Ch. R. Reddy. 2013. Sweet sorghum bagasse—A source of organic manure. In Developing a sweet sorghum ethanol value chain. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Andhra Pradesh, India, 155–162. ISBN 978-92-9066-555-7.

  46. Schloss, P.D., A.G. Hay, D.B. Wilson, and L.P. Walker. 2003. Tracking temporal changes of bacterial community fingerprints during the initial stages of composting. FEMS Microbiology Ecology 46: 1–9.

    CAS  PubMed  Google Scholar 

  47. Schwyn, B., and J.B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry 160: 47–56.

    CAS  PubMed  Google Scholar 

  48. Shah, R.U., M. Abid, M.F. Qayyum, and R. Ullah. 2015. Dynamics of chemical changes through production of various composts/vermicompost such as farm manure and sugar industry wastes. International Journal of Recycling of Organic Waste in Agriculture 4(1): 39–51.

    Google Scholar 

  49. Shapira, R., A. Ordentlich, I. Chet, and A.B. Oppenheim. 1989. Control of plant diseases by chitinase expressed from cloned DNA in Escherichia coli. Phytopathology 79: 1246–1249.

    CAS  Google Scholar 

  50. Shapiro, M., and R. Argauer. 1997. Components of the stilbene optical brightener Tinopal LPW as enhancers of the gypsy moth (Lepidoptera: Lymantriidae) baculovirus. Journal of Economic Entomology 90: 899–904.

    CAS  Google Scholar 

  51. Siddiqui, Z.A. 2006. PGPR: prospective biocontrol agents of plant pathogens. In PGPR: biocontrol and biofertilization, ed. Z.A. Siddiqui, 111–142. Dordrecht: Springer.

    Google Scholar 

  52. Slininger, P.J., R.W. Behle, M.A. Jackson, and D.A. Schisler. 2003. Discovery and development of biocontrol agents to control crop pests. Neotropical Entomology 32: 183–195.

    Google Scholar 

  53. Suthar, S., R. Choyal, R. Singh, and R. Sudesh. 2005. Stimulatory effect of earthworm body fluid on seed germination and seedlings growth of two legumes. Journal of Phytological Research 1: 219–222.

    Google Scholar 

  54. Tokala, R.K., J.L. Strap, C.M. Jung, D.L. Crawford, M.H. Salove, L.A. Deobald, J.F. Bailey, and M.J. Morra. 2002. Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Applied and Environmental Microbiology 68: 2161–2171.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Trivedi, P., A. Pandey, and L.M.S. Palni. 2005. Carrier-based preparations of PGP bacterial inoculants suitable for use in cooler regions. World Journal of Microbiology and Biotechnology 21: 941–945.

    Google Scholar 

  56. Vidal-Valverde, C., J.F.C. Sotomayor, C.D.M. Fernandez, and G. Urbano. 1998. Nutrients and antinutritional factors in faba beans as affected by processing. Zeitschrift für Le0bensmittel-Untersuchung und–Forschung A 207: 140–145.

    CAS  Google Scholar 

  57. Vijayabharathi, R., B.R. Kumari, A. Satya, V. Srinivas, A. Rathore, H.C. Sharma, and S. Gopalakrishnan. 2014. Biological activity of entomopathogenic actinomycetes against lepidopteran insects (Noctuidae: Lepidoptera). Canadian Journal of Plant Science 94: 759–769.

    Google Scholar 

  58. Wang, C.M., C.M. Changa, M.E. Watson, W.A. Dick, Y. Chen, and H.A.J. Hoitink. 2004. Maturity indices of composted dairy and pig manures. Soil Biology and Biochemistry 36: 767–776.

    CAS  Google Scholar 

  59. Yandigeri, M.S., N. Malviya, M.S. Kumar, S. Pooja, and G. Sivakumar. 2015. Chitinolytic Streptomyces vinaceusdrappus S5MW2 isolated from Chilika lake, India enhances plant growth and biocontrol efficacy through chitin supplementation against Rhizoctonia solani. World Journal of Microbiology and Biotechnology 31: 1217–1225.

    CAS  PubMed  Google Scholar 

  60. Yu, Z., and G.C. Brown. 1997. Auto-dissemination of a beet army worm (Lepidoptera: Noctuidae) baculovirus under laboratory conditions. Journal of Economic Entomology 90: 1187–1194.

    Google Scholar 

  61. Zeng, G., Z. Yu, Y. Chen, J. Zhang, H. Li, M. Yu, and M. Zhao. 2011. Response of compost maturity and microbial community composition to pentachlorophenol (PCP)-contaminated soil during composting. Bioresource Technology 102: 5905–5911.

    CAS  PubMed  Google Scholar 

  62. Zhao, K., P. Penttinen, X. Zhang, Z. Ao, M. Liu, X. Yu, and Q. Chen. 2014. Maize rhizosphere in Sichuan, China, hosts plant growth-promoting Burkholderia cepacia with phosphate solubilizing and antifungal activities. Microbiological Research 169: 76–82.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Biotechnology, Government of India, for funding this study. This work has been undertaken as part of the CGIAR Research Program on Grain Legumes and Dry Land Cereals (GLDC). ICRISAT is a member of CGIAR Consortium. We thank Mr. PVS Prasad for his significant contribution in the laboratory and greenhouse studies.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Subramaniam Gopalakrishnan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gopalakrishnan, S., Srinivas, V., Kumar, A.A. et al. Composting of Sweet Sorghum Bagasse and its Impact on Plant Growth Promotion. Sugar Tech 22, 143–156 (2020). https://doi.org/10.1007/s12355-019-00747-4

Download citation

Keywords

  • Sweet sorghum
  • Bagasse
  • Cellulose-degrading microbes
  • Plant growth promotion
  • Yield traits
  • Micronutrients