Skip to main content
Log in

Photocatalytic Effect of TiO2 Nanoparticles on Morphological and Photochemical Properties of Stevia Plant (Stevia Rebaudiana Bertoni)

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

In the present study, the effects of different concentrations of titanium dioxide (TiO2) nanoparticles on morphological parameters and on the quantity of the produced steviol glycosides were investigated as well as its effect on the parameters such as fresh weight of shoots, dry weight of shoots, membrane lipid peroxidation [in terms of malondialdehyde (MDA) assay], and concentration of stevioside glycoside in the plants. The results revealed that the plants treated with 400 ppm TiO2 nanoparticles had the highest fresh and dry weight of shoots, whereas those treated with 200 ppm had the lowest concentration of MDA and the highest quantity of stevioside. Therefore, the treatment with TiO2 nanoparticles had a significant positive effect on morphological and phytochemical properties of Stevia plant. The TiO2 nanoparticles transmit light energy to electrons, convert them into chemical energy, and ultimately increase CO2 stabilization, making them very efficient with respect to their photocatalytic properties. The results are very encouraging, and they show that there is a great potential for the use of such nanoparticles in increasing the metabolites in the plant. This is the first study evaluating the favorable effects of TiO2 nanoparticles on the highly valuable medicinal plant Stevia (Stevia rebaudiana Bertoni), in terms of uptake, translocation, and alteration of metabolic pathways in a concentration-dependent mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdullah, R., Z. Alizah, W.H. Wee, C.L. Leaw, and C.B. Yeap. 2005. Immature embryo: a useful tool for oil palm (Elaeis guineensis Jacq.) genetic transformation studies. Electronic Journal of Biotechnology 8: 24–34.

    Article  Google Scholar 

  • Chaves, M.M., and M.M. Oliveria. 2004. Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. Journal of Experimental Botany 55: 2365–2384.

    Article  CAS  Google Scholar 

  • Din, M.S.U., M.S. Chowdhury, M.M.H. Khan, M.B.U. Din, R. Ahmed, and M.A. Baten. 2006. In vitro propagation of Stevia rebaudiana Bert in Bangladesh. African Journal of Biotechnology 5: 1238–1240.

    Google Scholar 

  • Ding, Z., G.Q. Lu, and P.F. Greenfield. 2000. Role of crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water. The Journal of Physical Chemistry B 104: 4815–4820.

    Article  CAS  Google Scholar 

  • Duffy, E.F., F.A. Touati, and S.C. Kehoe. 2004. A novel TiO2-assisted solar photocatalytic batchprocess disinfection reactor for the treatment of biological and chemical contaminants in domestic drinking water in development countries. Solar Energy 77: 649–655.

    Article  CAS  Google Scholar 

  • Esterbauer, H., P. Eckl, and A. Ortner. 1990. Possible mutagens derived from lipids and lipid precursors. Mutation Research 238: 223–233.

    Article  CAS  Google Scholar 

  • Esterbauer, H., R.J. Schaur, and H. Zollner. 1991. Chemistry and biochemistry of 4 hydroxynonenal, malonaldehyde and related aldehydes. Free Radical Biology and Medicine 11: 81–128.

    Article  CAS  Google Scholar 

  • Ferri, L.A., W. Alves-Do-Prado, S.S. Yamada, S. Gazola, M.R. Batista, and R.B. Bazotte. 2006. Investigation of the antihypertensive effect of oral crude stevioside in patients with mild essential hypertension. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives 20: 732–736.

    Article  CAS  Google Scholar 

  • Frazer, L. 2001. Titanium dioxide: environmental white knight? Environmental Health Perspectives 109: A147–A177.

    Google Scholar 

  • Gao, F., I. Chao, L. Zheng, S. Mingyu, W. Xiao, F. Yang, W. Cheng, and Y. Ping. 2006. Mechanism of nano anatase TiO2 on promoting photosynthetic carbon reaction of spinach. Biological Trace Element Research 111: 239–245.

    Article  CAS  Google Scholar 

  • Geuns, J.M.C. 2003. Stevioside Phytochemistry. Phytochemistry 64: 913–921.

    Article  CAS  Google Scholar 

  • Goyal, S., G.R. Samsher, and R. Goyal. 2010. Stevia (Stevia rebaudiana) a bio-sweetener: a review. International Journal of Food Sciences and Nutrition 61: 1–10.

    Article  CAS  Google Scholar 

  • Gregersen, S., P.B. Jeppesen, J.J. Holst, and K. Hermansen. 2004. Antihyperglycemic effects of stevioside in type 2 diabetic subjects. Metabolism 53: 73–106.

    Article  CAS  Google Scholar 

  • Hao, Y., X. Cao, C. Ma, Z. Zhang, N. Zhao, A. Ali, T. Hou, Z. Xiang, J. Zhuang, and S. Wu. 2017. Potential applications and antifungal activities of engineered nanomaterials against gray mold disease agent Botrytis cinerea on rose petals. Frontiers in Plant Science 8: 1332.

    Article  Google Scholar 

  • Hao, Y., W. Yuan, C. Ma, J. White, Z. Zhang, M. Adeel, T. Zhou, R. Yukui, and B. Xing. 2018. Engineered nanomaterials suppress Turnip mosaic virus infection in tobacco (Nicotiana benthamiana). Environmental Science: Nano 5: 1685–1693.

    CAS  Google Scholar 

  • Heat, R.L., and L. Packer. 1968. Photoperaxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidantion. Archives of Biophysics 125: 189–198.

    Article  Google Scholar 

  • Hendawey, M.H., R.A. El-Fadl, and T.S. El-Din. 2015. Biochemical role of some nanoparticles in the production of active constituents in Stevia Rebaudiana L. Callus. Life Science Journal 12: 1–13.

    Google Scholar 

  • Hong, F., J. Zhou, C. Liu, F. Yang, C. Wu, L. Zheng, and P. Yang. 2005. Effects of Nano-TiO2 on photochemical reaction of chloroplasts of Spinach. Biological Trace Element Research 105: 269–279.

    Article  CAS  Google Scholar 

  • Humphrey, T.V., A.S. Richman, R. Menassa, and E. Jim. 2006. Spatial organisation of four enzymes from Stevia rebaudiana Bertoni that are involved in steviol glycoside synthesis. Plant Molecular Biology 61: 47–62.

    Article  CAS  Google Scholar 

  • Javed, R., A. Mohamed, B. Yucesan, E. Gurel, R. Kausar, and M. Zia. 2017a. CuO nanoparticles significantly influence in vitro culture, steviol glycosides, and antioxidant activities of Stevia rebaudiana Bertoni. Plant Cell, Tissue and Organ Culture 131: 611–620.

    Article  CAS  Google Scholar 

  • Javed, R., M. Usman, B. Yucesan, M. Zia, and E. Gurel. 2017b. Effect of zinc oxide (ZnO) nanoparticles on physiology and steviol glycosides production in micropropagated shoots of Stevia rebaudiana Bertoni. Plant Physiology and Biochemistry 110: 94–99.

    Article  CAS  Google Scholar 

  • Ji, Y., Y. Zhou, C. Ma, Y. Feng, Y. Hao, Y. Rui, W. Wu, X. Gui, Y. Han, and Y. Wang. 2017. Jointed toxicity of TiO2 NPs and Cd to rice seedlings: NPs alleviated Cd toxicity and Cd promoted NPs uptake. Plant Physiology and Biochemistry 110: 82–93.

    Article  CAS  Google Scholar 

  • Johnson, A. 2005. Agriculture and nanotechnology. http://www.tahan.com/chalie/nanosociety/course201.

  • Karuppusamy, S. 2009. A review on trends in production of secondary metabolites from higher plants by invitro tissue, organ and cell cultures. Journal of Medicinal Plants 3: 1222–1239.

    CAS  Google Scholar 

  • Kohda, H., R. Kasai, K. Yamasaki, K. Murakami, and O. Tanaka. 1976. New sweet diterpene glucosides from Stevia rebaudiana. Phytochemistry 15: 981–983.

    Article  CAS  Google Scholar 

  • Linglan, M., L. Chao, Q. Chunxiang, Y. Sitao, L. Jie, G. Fengqing, and H. Fashui. 2008. Rubisco activase mRNA expression in spinach: modulation by nanoanatase treatment. Biological Trace Element Research 122: 168–178.

    Article  Google Scholar 

  • Mamta, P.R., P. Vijaylata, G. Arvind, S. Bikram, K.B. Ravinde, and T. Rupinder. 2010. Stimulatory effect of phosphate-solubilizing bacteria on plant growth. Stevioside and rebaudioside-A contents of Stevia rebaudiana Bertoni. Soil Ecology 46: 222–229.

    Article  Google Scholar 

  • Mandeh, M., M. Omidi, and M. Rahaie. 2012. In vitro influences of TiO2 nanoparticles on barley (Hordeum vulgare L.) tissue culture. Biological Trace Element Research 150: 376–380.

    Article  Google Scholar 

  • Mingyu, S., F. Hong, C. Liu, X. Wu, X. Liu, and L. Chen. 2007. Effects of nano-anatase TiO2 on absorption, distribution of light and photo reduction activities of chloroplast membrane of spinach. Biological Trace Element Research 118: 120–130.

    Article  Google Scholar 

  • Moaveni, P., K. Sharifi, and D. Fathollah. 2014. The effect of titanium nanoparticle on some of the technological, physiological and functional traits in sugar beet. Quarterly Journal of Ecophysiology of Crops 6: 12–18.

    Google Scholar 

  • Mohammadi, R., R. Maali-Amiri, and N.L. Mantari. 2014. Effect of TiO2 nanoparticles on oxidative damage and antioxidant defense systems in chickpea seedlings during cold stress. Russian Journal of Plant Physiology 61: 768–775.

    Article  CAS  Google Scholar 

  • Nair, R., S.H. Varghese, B.G. Nair, T. Maekawa, Y. Yoshida, and D. Sakhti Kumar. 2010. Nano particulate material delivery to plants. Plant Science 179: 154–163.

    Article  CAS  Google Scholar 

  • Nanotechnology-Specialist-Headquarters. 2005. Complementary document future strategy (Ten Years Strategy of Nanotechnology Development in the Islamic Republic of Iran). http://www.nano.ir 5.

  • Ramesh, K., V. Singh, and N.W. Megeji. 2006. Cultivation of Stevia rebaudiana Bertoni. comprehensive review. Advances in Agronomy 89: 137–177.

    Article  Google Scholar 

  • Rita-Elkins, M.H. 1997. Stevia Nature’s Sweeteners. Woodland Publishing Inc. (Web article), 1–29.

  • Saber, S., Z. Ghesimi-Hagh, and S. Mostafavi. 2012. Effect and mechanism of titanium oxide nanoparticles on plant physiology processes of spinach (Spinacia oleracea). In The 2nd National Conference on Sustainable Agriculture and Environment, 1–16.

  • Shaw, A.K., and Z. Hossain. 2013. Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings’. Chemosphere 93: 906–915.

    Article  CAS  Google Scholar 

  • Shibata, H., S. Sonoke, H. Ochiai, H. Nishihashi, and M. Yamada. 1991. Glucosylation of steviol and steviol glucosides in extracts from Stevia rebaudiana Bertoni. Plant Physiology and Biochemistry 95: 152–156.

    Article  CAS  Google Scholar 

  • Wang, H.F., X.H. Zhong, W.Y. Shi, and B. Gao. 2011. Study of malondialdehyde (MDA) content, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in chickens infected with avian infectious bronchitis virus. African Journal of Biotechnology 10: 9213–9217.

    Article  CAS  Google Scholar 

  • Xia, L., S.C. Lenaghan, M. Zhang, Z. Zhang, and Q. Li. 2010. Naturally occurring nanoparticles from English ivy: an alternative to metal-based nanoparticles for UV protection. Journal of Nanobiotechnology 8: 12.

    Article  Google Scholar 

  • Yang, F., F. Hong, W. You, C. Liu, F. Gao, C. Wu, and P. Yang. 2006. Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biological Trace Element Research 110: 179–190.

    Article  CAS  Google Scholar 

  • Yang, F., C. Liu, F. Gao, M.Y. Su, X. Wu, L. Zheng, F.S. Hong, and P. Yang. 2007. The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biological Trace Element Research 119: 77–88.

    Article  CAS  Google Scholar 

  • Zar-Afshar, M., H. Askari, S.M. Hosseini, and M. Rahaei. 2014. The effect of titanium dioxide nanoparticle spraying on modifying the destructive effects of drought in wild pear (Pyrus biosseriana buhse.). Journal of Environmental Protection Plants 3: 1–17.

    Google Scholar 

  • Zheng, L., M.Y. Su, X. Wu, C. Liu, C.X. Qu, L. Chen, H. Huang, X.Q. Liu, and F.S. Hong. 2008. Antioxidant stress promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biological Trace Element Research 121: 69–79.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Damghan Islamic Azad University, Laboratory Research Complex, for valuable technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hashemi-Moghaddam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaizad, M., Hashemi-Moghaddam, H., Abbaspour, H. et al. Photocatalytic Effect of TiO2 Nanoparticles on Morphological and Photochemical Properties of Stevia Plant (Stevia Rebaudiana Bertoni). Sugar Tech 21, 1024–1030 (2019). https://doi.org/10.1007/s12355-019-00726-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-019-00726-9

Keywords

Navigation