Skip to main content
Log in

Cardamom [Elettaria cardamomum (L.) Maton]-Fortified Jaggery: Its Physicochemical Characterization and In Vitro Antioxidant Capacity

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Jaggery was fortified with Elettaria cardamomum at 0.05%, 0.1% and 0.2% (w/v) of Co 86032, Co 419 and Co 62175 sugarcane varieties and was evaluated for physical and chemical characteristics and in vitro antioxidant capacity, viz. 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and reducing power ability. E. cardamomum-fortified jaggery showed increased insoluble solid contents, color intensity, turbidity with decreased filterability at different E. cardamomum concentrations. Sucrose and reducing sugars increased marginally in E. cardamomum-fortified jaggery, but total phenol and flavonoid contents enhanced after E. cardamomum fortification in all the test varieties. Fortified jaggery showed increased antioxidant activity as revealed by DPPH radical scavenging ability and reducing power potential. An EC50 of 3.143, 2.864 and 2.967 mg/mL was observed at 0.2% concentration of E. cardamomum fortification for jaggery prepared from Co 86032, Co 419 and Co 62175, respectively. Co 419- and Co 62175-fortified jaggery showed 21 and 23% increase in DPPH radical scavenging capacity. A positive correlation (r = 0.985, 0.744 and 0.908) was observed between total phenolic and antioxidant activity of E. cardamomum-fortified jaggery for Co 86032, Co 419 and Co 62175 varieties, respectively. E. cardamomum-fortified jaggery at 0.2% spice fortification concentration has increased 14.4, 27.6 and 33.3% of reducing power in Co 86032, Co 419 and Co 62175, respectively. Hence, E. cardamomum-fortified jaggery might be a served as natural sweetner for improved health benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ajila, C.M., K.A. Naidu, S.G. Bhat, and U.J.S. Prasad Rao. 2007. Bioactive compounds and antioxidant potential of mango peel extract. Food Chemistry 105: 982–988.

    Article  CAS  Google Scholar 

  • Aliakbarlu, J., S. Mohammadi, and S. Khalili. 2013. A study on antioxidant potency and antibacterial activity of water extracts of some spices widely consumed in Iranian diet. Journal of Food Biochemistry 38: 159–166.

    Article  Google Scholar 

  • Al-Zuhair, H., B. El-Sayeh, A.H. Ameen, and H. Al-Shoora. 1996. Pharmacological studies on E. cardamomum oil in animals. Pharmacological Research 34: 79–82.

    Article  CAS  PubMed  Google Scholar 

  • Anon. 1999. ICUMSA METHODS, 2002 Updates. Method GS1/2/3-2, p. 6.

  • Anonymous. 1990. Bureau of Indian Standards, IS 12923, 1990: (Clause 4.3 and 6.1), New Delhi, India.

  • Aruoma, O.I. 1998. Free radicals, oxidative stress, and antioxidants in human health and disease. Journal of the American Oil Chemists’ Society 75: 483–485.

    Article  Google Scholar 

  • Asma, S., S. Bushra, A. Farooq, M. Muhammad, M.A. Khalid, and G. Anwarul-Hassan. 2014. Antioxidant and antimutagenic potential of seeds and pods of green cardamom (Elettaria cardamomum). International Journal of Pharmacology 10: 461–469.

    Article  CAS  Google Scholar 

  • Badei, A.Z.M., A.T.M. El-Akel, S.M.M. Faheid, and B.S.M. Mahmoud. 2002. Application of some spices in flavoring and preservation of cookies: 1-Antioxidant properties of cardamom, cinnamon, and clove. Deutsche Lebensmittel-Rundschau 98: 176–183.

    CAS  Google Scholar 

  • Belitz, H.D., and W. Grosch. 1997. Quimica de Los Alimentos, 211–241. Zaragoza: Acribia.

    Google Scholar 

  • Beuchat, L.R. 1981. Microbial stability as affected by water activity. Cereal Foods World 26: 345–349.

    Google Scholar 

  • Blios, M.S. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199–1200.

    Article  Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254.

    Article  CAS  Google Scholar 

  • Bravo, L. 1998. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews 56: 317–333.

    Article  CAS  PubMed  Google Scholar 

  • Burns, J., P.T. Gardner, D. Matthews, G.G. Duthie, M.E. Lean, and A. Crozier. 2001. Extraction of phenolics and changes in antioxidant activity of red wines during vinification. Journal of Agricultural and Food Chemistry 49: 5797–5808.

    Article  CAS  PubMed  Google Scholar 

  • Chang, C., M. Yang, H. Wen, and J. Chern. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis 10: 178–182.

    CAS  Google Scholar 

  • Damodaran, S. 2000. Aminoacidos, peptidos y proteinas. In Quimica de alimentos, 2nd ed, ed. O.R. Fenemma, 490. Espana: Acribia.

    Google Scholar 

  • Diaz, M.N., B. Frei, J.A. Vita, and J.F. Keaney. 1997. Antioxidants and atherosclerotic heart disease. The New England Journal of Medicine 337: 408–416.

    Article  CAS  PubMed  Google Scholar 

  • Dong-Ping, Xu, Ya. Li, Xiao Meng, Tong Zhou, Jie Zheng, Jiao-Jiao Zhang, and Hua-Bin Li. 2017. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. International Journal of Medicinal Sciences 18: 96–128.

    Google Scholar 

  • Duarte-Almeida, J.M., A.V. Novoa, A.F. Linares, F.M. Lajolo, and M.I. Genovese. 2006. Antioxidant activity of phenolics compounds from sugarcane (Saccharum officinarum L.) juice. Plant Foods for Human Nutrition 61: 187–192.

    Article  CAS  Google Scholar 

  • Ecuadorian Technical Standard NTE INEN 2 332. 2002. Panela Granulada Requisitos, p. 2 Quito-Ecuador.

  • Farrell, K.T. 1985. Spices, condiments and seasonings. Westport: AVI Publishing Company Inc.

    Google Scholar 

  • Forstermann, U. 2008. Oxidative stress in vascular disease: Causes, defense, mechanisms and potential therapies. Nature Clinical Practice Cardiovascular Medicine 5: 338–349.

    Article  CAS  PubMed  Google Scholar 

  • Guerra, M.J., and M.V. Mujica. 2010. Physical and chemical properties of granulated cane sugar “panelas”. Ciencia e Tecnologia de Alimentos Campinas 30: 250–257.

    Article  Google Scholar 

  • Hagerman, A.E., K.M. Riedl, G.A. Jones, K.N. Sovik, N.T. Ritchard, P.W. Hartzfeld, and T.L. Riechel. 1998. High molecular weight plant polyphenolics (tannins) as biological antioxidants. Journal of Agricultural Food Chemistry 46: 1887–1892.

    Article  CAS  PubMed  Google Scholar 

  • Harish Nayaka, M.A., U.V. Sathisha, M.P. Manohar, K.B. Chandrashekar, and M. Shylaja Dharmesh. 2009. Cytoprotective and antioxidant activity studies of jaggery sugar. Food Chemistry 115: 113–118.

    Article  CAS  Google Scholar 

  • Helrich, K. 1990. Official methods of analysis of the Association of Official Analytical Chemists, 15th ed, 777–778. Washington DC: AOAC International Publisher.

    Google Scholar 

  • Jagannadha Rao, P.V.K., D. Madhusweta, and S.K. Das. 2007. Jaggery: A Traditional Indian Sweetener. Indian Journal of Traditional Knowledge 6: 95–102.

    Google Scholar 

  • Krishnaswamy, K. 1996. Indian functional foods: Role in prevention of cancer. Nutrition Reviews 54: 127–131.

    Article  Google Scholar 

  • Lane, J.H., and L. Eynon. 1923. Volumetric determination of reducing sugars by means of Fehling’s solution with methylene blue as internal indicator. Journal of Chemical Society India Transations 42: 32–37.

    Article  CAS  Google Scholar 

  • Mandal, D., S.R. Tudu, and G.C. De Mitra. 2006. Effect of common packing material on keeping quality of sugarcane Jaggery during monsoon season. Sugar Tech 8: 2–3.

    Article  Google Scholar 

  • McGhie, T.K. 1993. Analysis of sugarcane flavonoids by capillary zone electrophoresis. Journal of Chromatrography 634: 107–112.

    Article  CAS  Google Scholar 

  • Meir, S., J. Kanner, B. Akiri, and S.P. Hadas. 1995. Determination and involvement of aqueous reducing compounds in oxidative defense systems of various senescing leaves. Journal of Agricultural and Food Chemistry 43: 1813–1817.

    Article  CAS  Google Scholar 

  • Nirmala, M.A. 2000. Studies on the volatile of E. cardamomum (Elleteria cardamomum). Journal of Food Science and Technology 37: 406–408.

    Google Scholar 

  • Olayinka, A.A., and I.O. Anthony. 2010. Preliminary phytochemical screening and in vitro antioxidant activities of the aqueous extract of Helichrysum longifolium DC. BMC Complementary and Alternative Medicine 10: 21–25.

    Article  CAS  Google Scholar 

  • Paton, N.H., and M. Duong. 1992. Sugarcane phenolics and first expressed juice color-Part III and role of chlorogenic acid and flavonoids in enzymatic browning of cane juice. International Sugar Journal 94: 170–176.

    CAS  Google Scholar 

  • Rice-Evans, C., N. Miller, and G. Paganga. 1996. Structure–antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine 20: 933–956.

    Article  CAS  PubMed  Google Scholar 

  • Shukla, S.K., S.K. Adil Zubair, and A.D.Pathak Awasthi. 2018. Sugarcane varieties identified by AICRP(S) in India, 1–111. Lucknow: ICAR-All India Coordinated Research Project on Sugarcane, IISR.

    Google Scholar 

  • Simth, M.A., G. Perry, P.L. Richey, L.M. Sayre, V.E. Anderson, and M.F. Beal. 1996. Oxidative damage in Alzheimer’s. Nature 382: 120–121.

    Article  Google Scholar 

  • Singleton, V.L., R. Orthofer, and R.M. Lamuela-Raventos. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology 299: 152–178.

    Article  CAS  Google Scholar 

  • Souri, E., G. Amin, H. Farsam, and M. Barazandeh Tehrani. 2008. Screening of antioxidant activity and phenolic content of 24 medicinal plant extracts. DARU 16: 83–87.

    Google Scholar 

  • Takara, K., A. Kinjyo, D. Matsui, K. Wada, Y. Nakasone, and S. Yogi. 2000. Antioxidative phenolic compounds from non-sugar fraction in Kokuto, non-centrifugal cane sugar. Nippon Nageikagaku Kaishi 74: 885–890.

    CAS  Google Scholar 

  • Takara, K., D. Matsui, K. Wada, T. Ichiba, and Y. Nakasone. 2002. New antioxidative phenolic glycosides isolated from Kokuto, non-centrifugal cane sugar. Bioscience, Biotechnology, and Biochemistry 66: 29–35.

    Article  CAS  PubMed  Google Scholar 

  • Utta-Ur, R., M.I. Choudhary, A. Ahmed, M.Z. Iqbal, B. Demirci, F. Demirci, and K.H.C. Baser. 2000. Antifungal activity and essential oil constituent of some spices from Pakistan. Journal of the Chemical Society of Pakistan 22: 60–65.

    Google Scholar 

  • Variyar, P.S., C. Bandyopadhyay, and P. Thomas. 1998. Effect of γ-irradiation on the volatile oil constituents of some Indian spices. Food Research International 31: 105–109.

    Article  CAS  Google Scholar 

  • Wang, H., G.H. Cao, and R.L. Prior. 1996. Total antioxidant capacity of fruits. Journal of Agricultural Food Chemistry 44: 701–705.

    Article  CAS  Google Scholar 

  • Wood, E.G. 1978. Added value: The key to prosperity. Tiptree: Business Books Ltd.

    Google Scholar 

  • Yamaguchi, T., H. Takamura, T. Matoba, and J. Terao. 1998. HPLC method for evaluation of the free radical scavenging activity of foods by using 1,1-diphenyl-2-picrylhydrazyl. Bioscience, Biotechnology, and Biochemistry 62: 1201–1204.

    Article  CAS  PubMed  Google Scholar 

  • Yen, G.C., and H.Y. Chen. 1995. Antioxidant activity of various tea extracts in relation to their antimutagenicity. Journal of Agricultural and Food Chemistry 43: 27–32.

    Article  CAS  Google Scholar 

  • Zheng, W., and S. Wang. 2001. Antioxidant activity and phenolic composition in selected herbs. Journal of Agricultural and Food Chemistry 49: 5165–5170.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Department of Sugar Technology, Sir. M. Visvesvaraya, Post Graduate Centre, University of Mysore, Mandya 571402, Karnataka, India, for providing infrastructure for the research work. Dr. C. Vinutha acknowledges Department of Science and Technology, New Delhi, India, for awarding the INSPIRE fellowship and financial assistance.

Funding

Funding was provided by the Inspire Fellowship, Department of Science and Technology, Ministry of Science and Technology (Grant No. IF 110208 Inspire Fellowship).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mysore Annaiah Harish Nayaka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrakanth, V., Mysore Annaiah, H.N., Shivalingaiah, S. et al. Cardamom [Elettaria cardamomum (L.) Maton]-Fortified Jaggery: Its Physicochemical Characterization and In Vitro Antioxidant Capacity. Sugar Tech 21, 388–397 (2019). https://doi.org/10.1007/s12355-018-0678-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-018-0678-z

Keywords