Skip to main content
Log in

Effects of Intercropping with Peanut and Silicon Application on Sugarcane Growth, Yield and Quality

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Field experiments were conducted in two consecutive years (2013 and 2014) in order to explore the effects of intercropping sugarcane with peanut and silicon (Si) application on cane growth, yield and quality, and soil nutrients on acidic soil. The plant height was significantly increased with Si and intercropping + Si. The stalk diameter and stalk fresh weight were significantly enhanced with intercropping, Si application and intercropping + Si, except with intercropping in 2013. The yield, brix, pol, sucrose, and purity were remarkably increased, but reducing sugar and fiber content were significantly decreased with intercropping, Si application and intercropping + Si. Soil organic carbon (SOC), soil phosphorus (P), soil potassium (K), and soil Si content were enhanced with intercropping, Si application and intercropping + Si. Thus, by using intercropping with peanut and Si application, the plant growth, yield and quality of sugarcane and soil nutrient could be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen, S.E., H.M. Grimshaw, J.A. Parkinson, and C. Quarmby. 1976. Chemical analysis of ecological materials. Journal of Applied Ecology 13: 650–651.

    Article  Google Scholar 

  • Ashraf, M., R. Rahmatullah, M. Ahmad, M.A. Afzal, S.Kanwal Tahir, and M.A. Maqsood. 2009. Potassium and silicon improve yield and juice quality in sugarcane (Saccharum officinarum L.) under salt stress. Journal of Agronomy and Crop Science 195(4): 284–291.

    Article  CAS  Google Scholar 

  • Ayres, A.S. 1966. Calcium silicate slag as a growth stimulant for sugarcane on low-silicon soils. Soil Science 101(3): 216–227.

    Article  CAS  Google Scholar 

  • Bakhat, H.F., N. Bibi, Z. Zia, S. Abbas, H.M. Hammad, S. Fahad, M.R. Ashraf, G.M. Shah, F. Rabbani, and S. Saeed. 2018. Silicon mitigates biotic stresses in crop plants: A review. Crop Protection 104: 21–34.

    Article  CAS  Google Scholar 

  • Bokhtiar, S.M., H. Huang, and Y. Li. 2012. Response of sugarcane to calcium silicate on yield, gas exchange characteristics, leaf nutrient concentrations, and soil properties in two different soils. Communications in Soil Science and Plant Analysis 43(10): 1363–1381.

    Article  CAS  Google Scholar 

  • Borges, B.M.M.N., T.B.F.D. Almeida, and R.D.M. Prado. 2016. Response of sugarcane ratoon to nitrogen without and with the application of silicon. Journal of Plant Nutrition 39(6): 793–803.

    Article  CAS  Google Scholar 

  • Brooker, R.W., F.T. Maestre, R.M. Callaway, C.J. Lortie, L.A. Cavieres, G. Kunstler, P. Liancourt, K. Tielbörger, J.M.J. Travis, F. Anthelme, C. Armas, L. Coll, E. Corcket, S. Delzon, E. Forey, Z. Kikvidze, J. Olofsson, F. Pugnaire, C.L. Quiroz, P. Saccone, K. Schiffers, M. Seifan, B. Touzard, and R. Michalet. 2008. Facilitation in plant communities: The past, the present, and the future. Journal of Ecology 96: 18–34.

    Article  Google Scholar 

  • Cong, W.F., E. Hoffland, L. Li, B.H. Janssen, and W. van der Werf. 2015. Intercropping affects the rate of decomposition of soil organic matter and root litter. Plant and Soil 391(1–2): 399–411.

    Article  CAS  Google Scholar 

  • de Camargo, M.S., G.H. Korndörfer, and P. Wyler. 2014. Silicate fertilization of sugarcane cultivated in tropical soils. Field Crops Research 167: 64–75.

    Article  Google Scholar 

  • Gana, A.K., and L.D. Busari. 2003. Intercropping study in sugarcane. Sugar Tech 5(3): 193–196.

    Article  Google Scholar 

  • Guo, J.H., X.J. Liu, Y. Zhang, J.L. Shen, W.X. Han, W.F. Zhang, P. Christie, K.W.T. Goulding, P.M. Vitousek, and F.S. Zhang. 2010. Significant acidification in major Chinese croplands. Science 327(5968): 1008–1009.

    Article  CAS  Google Scholar 

  • Huang, Y.L., S. Yang, G.X. Long, Z.K. Zhao, X.F. Li, and M.H. Gu. 2016. Manganese toxicity in sugarcane plantlets grown on acidic soils of southern China. PLoS ONE 11(3): e0148956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isaac, M.E., P. Hinsinger, and J.M. Harm. 2012. Nitrogen and phosphorus economy of a legume tree-cereal intercropping system under controlled conditions. Science of the Total Environment 434: 71–78.

    Article  CAS  PubMed  Google Scholar 

  • Li, L., and Z. Rengel. 2012. Soil acidification as affected by phosphorus sources and interspecific root interactions between wheat and chickpea. Communications in Soil Science and Plant Analysis 43(13): 1749–1756.

    Article  CAS  Google Scholar 

  • Li, L., S.M. Li, J.H. Sun, L.L. Zhou, X.G. Bao, H.G. Zhang, and F.S. Zhang. 2007. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proceedings of the National Academy of Sciences 104: 11192–11196.

    Article  CAS  Google Scholar 

  • Li, S.L., Z.G. Li, L.T. Yang, Y.R. Li, and Z.L. He. 2018a. Differential effects of cold stress on chloroplasts structures and photosynthetic characteristics in cold-sensitive and cold-tolerant cultivars of sugarcane. Sugar Tech 20(1): 11–20.

    Article  CAS  Google Scholar 

  • Li, X.P., Y.H. Mu, Y.B. Cheng, X.G. Liu, and H. Nian. 2013. Effects of intercropping sugarcane and soybean on growth, rhizosphere soil microbes, nitrogen and phosphorus availability. Acta Physiologiae Plantarum 35(4): 1113–1119.

    Article  CAS  Google Scholar 

  • Li, Y.B., X.M. Xiao, Y. Chen, and X.F. Shen. 2017. Silicon effect on nutrient acquisition of peanut (Arachis hypogaea L.) under aluminum stress. Communications in Soil Science and Plant Analysis 48(21): 2526–2533.

    Article  CAS  Google Scholar 

  • Li, Y.Y., C.B. Yu, X. Cheng, C.J. Li, J.H. Sun, F.S. Zhang, H. Lamber, and L. Li. 2009. Intercropping alleviates the inhibitory effect of N fertilization on nodulation and symbiotic N2 fixation of faba bean. Plant and Soil 323(1–2): 295–308.

    Article  CAS  Google Scholar 

  • Li, Z.C., Z.L. Song, Z.F. Yan, Q. Hao, A.L. Song, L.A. Liu, X.M. Yang, S.P. Xia, and Y.C. Liang. 2018b. Silicon enhancement of estimated plant biomass carbon accumulation under abiotic and biotic stresses. A meta-analysis. Agronomy for Sustainable Development 38: 26.

    Article  Google Scholar 

  • Liang, Y., J. Si, and V. Römheld. 2005. Silicon uptake and transport is an active process in Cucumis sativus. New Phytologist 167(3): 797–804.

    Article  CAS  PubMed  Google Scholar 

  • Lingle, S.E., R.M. Johnson, T.L. Tew, and R.P. Viator. 2010. Changes in juice quality and sugarcane yield with recurrent selection for sucrose. Field Crops Research 118(2): 152–157.

    Article  Google Scholar 

  • Luo, S.S., L.L. Yu, Y. Liu, Y. Zhang, W.T. Yang, Z.X. Li, and J.W. Wang. 2016. Effects of reduced nitrogen input on productivity and N2O emissions in a sugarcane/soybean intercropping system. European Journal of Agronomy 81: 78–85.

    Article  CAS  Google Scholar 

  • Ma, J.F. 2004. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition 50(1): 11–18.

    Article  CAS  Google Scholar 

  • Marques, T.A., É.M. Rampazo, R.R. Zilliani, P.A.A. Marques, and F. Benincasa. 2016. Automated sugar analysis. Food Science and Technology (Campinas) 36(1): 70–75.

    Article  Google Scholar 

  • Meyer, J.H., and M.G. Keeping. 2000. Review of research into the role of silicon for sugarcane production. Proceedings of the South African Sugar Technologists’Association 74: 29–40.

    Google Scholar 

  • Muchow, R.C., M.J. Robertson, and A.W. Wood. 1996. Growth of sugarcane under high input conditions in tropical Australia. II. Sucrose accumulation and commercial yield. Field Crops Research 48(1): 27–36.

    Article  Google Scholar 

  • Preez, P. 1970. The effect of silica on cane growth. Proceedings of South African Sugar Technologists’ Association 44: 183–188.

    Google Scholar 

  • Raben-Lange, B., A.B. Bendtsen, and S.S. Jørgensen. 1994. Spectrophotometric determination of silicon in soil solutions by flow injection analysis: Reduction of phosphate interference. Communications in Soil Science and Plant Analysis 25: 3241–3256.

    Article  CAS  Google Scholar 

  • Richards, J.E., and T.E. Bates. 1989. Studies on the potassium-supplying capacities of Southern Ontario soils. III. Measurement of available K. Canadian Journal of Soil Science 69: 597–610.

    Article  CAS  Google Scholar 

  • Ross, L., P. Nababsing, and Y.W.Y. Cheong. 1974. Residual effect of calcium silicate applied to sugarcane soils. Proceedings of the International Congress Society of Sugar Cane Technologists 15(2): 539–542.

    Google Scholar 

  • Samuels, G. 1969. Silicon and sugar. Sugar y Azucar 66(4): 25–29.

    Google Scholar 

  • Savant, N.K., G.H. Korndörfer, L.E. Datnoff, and G.H. Snyder. 1999. Silicon nutrition and sugarcane production: A review. Journal of Plant Nutrition 22(12): 1853–1903.

    Article  CAS  Google Scholar 

  • Solanki, M.K., Z. Wang, F.Y. Wang, C.N. Li, T.J. Lan, R.K. Singh, P. Singh, L.T. Yang, and Y.R. Li. 2017. Intercropping in sugarcane cultivation influenced the soil properties and enhanced the diversity of vital diazotrophic bacteria. Sugar Tech 19(2): 136–147.

    Article  CAS  Google Scholar 

  • Tewari, J., and J. Irudayaraj. 2003. Rapid estimation of pol content in sugarcane juice using FTIR-ATR spectroscopy. Sugar Tech 5(3): 143–148.

    Article  CAS  Google Scholar 

  • Walkley, A., and I.A. Black. 1934. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37: 29–38.

    Article  CAS  Google Scholar 

  • Zarekar, V.V., H.M. Patil, V.N. Game, and S.B. Gangawane. 2017. Effect of intercropping and planting methods on yield, quality and economics of sugarcane under lateritic soil condition. International Journal of Chemical Studies 5(4): 1895–1900.

    Google Scholar 

  • Zhang, G.G., Z.B. Yang, and S.T. Dong. 2011. Interspecific competitiveness affects the total biomass yield in an alfalfa and corn intercropping system. Field Crops Research 124(1): 66–73.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial supports from the Pearl River S&T Nova Program of Guangzhou (201710010102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, XF., Zhao, ZH. & Chen, Y. Effects of Intercropping with Peanut and Silicon Application on Sugarcane Growth, Yield and Quality. Sugar Tech 21, 437–443 (2019). https://doi.org/10.1007/s12355-018-0667-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-018-0667-2

Keywords

Navigation