Advertisement

Sugar Tech

pp 1–9 | Cite as

Nitrogen source contribution in sugarcane-inoculated plants with diazotrophic bacterias under urea-N fertigation management

  • Glauber José de Castro Gava
  • Fábio Vale Scarpare
  • Heitor Cantarella
  • Oriel Tiago Kölln
  • Simone Toni Ruiz-Corrêa
  • Adolfo Bergamo Arlanch
  • Paulo Cesar Ocheuze Trivelin
Research Article
  • 81 Downloads

Abstract

Although Brazilian sugarcane crops use lower nitrogen rates when compared to other producing countries, the biological nitrogen fixation (BFN) could be performed aiming to reduce costs, since almost all nitrogen fertilization used in Brazil is imported. BFN can occur in sugarcane; however, its role in non-leguminous plants is controversial. Therefore, this study aimed to assess the nitrogen source contribution (using N isotope 15N technique) along a growing period in sugarcane plants under different management (diazotrophic bacteria inoculation and N fertigation rates). The natural abundance of nitrogen isotope (15N) abundance in + 1 leaves of fourth ratoon cultivar SP 80-3280 was used to indicate the comparative importance of N sources, including BFN for sugarcane nutrition. The treatments were irrigated with two levels of nitrogen fertilizer 50 and 100 kg ha−1 (urea source), including a control without fertilizer, with (I) and without (NI) inoculation of nitrogen-fixing bacterias. The bacteria cocktail used consisted of five strains: Gluconacetobacter diazotrophicus, Herbaspirillum seropedicae, H. rubrisubalbicans, Burkholderia tropica and Azospirillum amazonense. Although the nitrogen content in + 1 leaves, the above ground dry matter, cane yield and stalk sugar content expanded by increasing nitrogen fertilizer rates, no significant interactions between nitrogen-fixing bacteria inoculation and nitrogen fertilizer rates were observed. In the treatment without N fertilizer application, no differences in δ15N‰ (per thousand) values between sugarcane-inoculated and sugarcane-non-inoculated sugarcane leaves was found. The temporal variation of δ15N‰ in sugarcane + 1 leaves indicated that nitrogen content and δ15N‰ values decreased during the phenological development stages and that the main sources of nitrogen for sugarcane were from synthetic fertilizer and mineralization of nitrogen from soil organic matter.

Keywords

Isotope fractionation Subsurface drip irrigation Biological nitrogen fixation Temporal 15N variation Nitrogen fertilizer Crop management Fertilization 

Notes

Acknowledgements

We thank the Agência Paulista de Tecnologia dos Agronégocios (APTA-Jaú) for fieldwork support and São Paulo Research Foundation for project funded (FAPESP: 2008/56.147-1).

Funding

This study was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (grant number 2008/56147-1).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Barrie, A., and S.J. Prosser. 1996. Automated analysis of light-element stable isotopes by isotope ratio mass spectrometry. In: Mass Spectrometry of Soils, ed. Boutton TW, Yamashi S (Eds). New York, p. 1–46.Google Scholar
  2. Bateman, A.S., and S.D. Kelly. 2007. Fertilizer nitrogen isotope signatures. Isotopes in Environmental and Health Studies 43(3): 237–247.  https://doi.org/10.1080/10256010701550732.CrossRefPubMedGoogle Scholar
  3. Biggs, I.M., G.R. Stewart, J.R. Wilson, and C. Critchley. 2002. 15N natural abundance studies in Australian commercial sugarcane. Plant and Soil 238(1): 21–30.  https://doi.org/10.1023/A:1014280420779.CrossRefGoogle Scholar
  4. Boddey, R.M., J.C. Polidoro, A.S. Resende, B.J.R. Alves, and S. Urquiaga. 2001. Use of the 15N natural abundance technique for the quantification of the contribution of N2 fixation to sugarcane and other grasses. Australian Journal of Plant Physiology 28(9): 889–895.  https://doi.org/10.1071/PP01058.Google Scholar
  5. Chaves, V.A., S.G. dos Santos, N. Schultz, W. Pereira, J.S. Sousa, R.C. Monteiro, and V.M. Reis. 2015. Desenvolvimento inicial de duas variedades de cana-de-açúcar inoculadas com bactérias diazotróficas. Revista Brasileira de Ciência do Solo 39: 1595–1602.  https://doi.org/10.1590/01000683rbcs20151144.CrossRefGoogle Scholar
  6. Choi, W.J., S.M. Lee, H.M. Ro, K.C. Kim, and S.H. Yoo. 2002. Natural 15N abundances of maize and soil amended with urea and composted pig manure. Plant and Soil 245(2): 223–232.  https://doi.org/10.1023/A:1020475017254.CrossRefGoogle Scholar
  7. CONSECANA - Conselho dos Produtores de cana-de-açúcar, açúcar e etanol do Estado de São Paulo. 2003. Manual de Instruções. 4 ed. Piracicaba.Google Scholar
  8. David, M., B. Loubet, P. Cellier, M. Mattsson, J.K. Schjoerring, E. Nemitz, R. Roche, M. Riedo, and M.A. Sutton. 2009. Ammonia sources and sinks in an intensively managed grassland canopy. Biogeosciences 6: 1903–1915.  https://doi.org/10.5194/bg-6-1903-2009.CrossRefGoogle Scholar
  9. Dawson, T.E., S. Mambelli, A.H. Plamboeck, P.H. Templer, and K.P. Tu. 2002. Stable isotopes in plant ecology. Annual Review of Ecology and Systematics 33: 507–559.  https://doi.org/10.1146/annurev.ecolsys.33.020602.095451.CrossRefGoogle Scholar
  10. EMBRAPA. 2006. Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), 2nd ed. Rio de Janeiro: Manual de métodos de análises de solo.Google Scholar
  11. EMBRAPA. 2013. Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA). Rio de Janeiro: Sistema brasileiro de classificação de solos.Google Scholar
  12. Evans, R.D. 2007. Soil nitrogen isotope composition. In Stable isotopes in ecology and environmental science, 2nd ed, ed. K. Lajtha, and R.H. Michener, 83–98. Oxford: Blackwell.CrossRefGoogle Scholar
  13. Fortes, C., P.C.O. Trivelin, A.C. Vitti, R. Otto, H.C.J. Franco, and C.E. Faroni. 2013. Stalk and sucrose yield in response to nitrogen fertilization of sugarcane under reduced tillage. Pesquisa Agropecuária Brasileira 48: 88–96.  https://doi.org/10.1590/S0100-204X2013000100012.CrossRefGoogle Scholar
  14. Francis, D.D., J.S. Schepers, and A.L. Sims. 1997. Ammonia exchange from corn foliage during reproductive growth. Agronomy Journal 89(6): 941–946.  https://doi.org/10.2134/agronj1997.00021962008900060015x.CrossRefGoogle Scholar
  15. Franco, H.C.J., R. Otto, C.E. Faroni, A.C. Vitti, E.C.A. Oliveira, and P.C.O. Trivelin. 2011. Nitrogen in sugarcane derived from fertilizer under Brazilian field conditions. Field Crops Research 121(1): 29–41.  https://doi.org/10.1016/j.fcr.2010.11.011.CrossRefGoogle Scholar
  16. Frank, D.A., R.D. Evans, and B.F. Tracy. 2004. The role of ammonia volatilization in controlling the natural 15N abundance of a grazed grassland. Biogeochemistry 68(2): 169–178.  https://doi.org/10.1023/B:BIOG.0000025736.19381.91.CrossRefGoogle Scholar
  17. Gava, G.J.C., P.C.O. Trivelin, M.W. Oliveira, and C.P. Penatti. 2001. Crescimento e acúmulo de nitrogênio em cana-de-açúcar cultivada em solo coberto com palhada. Pesquisa Agropecuária Brasileira 36(11): 1347–1354.  https://doi.org/10.1590/S0100-204X2001001100004.CrossRefGoogle Scholar
  18. Ghiberto, P.J., P.L. Libardi, A.S. Brito, and P.C.O. Trivelin. 2011. Nitrogen fertilizer leaching in an Oxisol cultivated with sugarcane. Scientia Agricola 68(1): 86–93.  https://doi.org/10.1590/S0103-90162011000100013.CrossRefGoogle Scholar
  19. Gírio, L.A.D.S., F.L.F. Dias, V.M. Reis, S. Urquiaga, N. Schultz, D. Bolonhezi, and M.A. Mutton. 2015. Bactérias promotoras de crescimento e adubação nitrogenada no crescimento inicial de cana-de-açúcar proveniente de mudas pré-brotadas. Pesquisa Agropecuária Brasileira 50: 33–43.  https://doi.org/10.1590/S0100-204X2015000100004.CrossRefGoogle Scholar
  20. Greenwood, D.J., F. Gastal, G. Lemaire, A. Draycott, P. Millard, and J.J. Neeteson. 1991. Growth rate and % N of field grown crops: theory and experiments. Annals of Botany 67(2): 181–190.CrossRefGoogle Scholar
  21. Greenwood, D.J., G. Lemaire, G. Gosse, P. Cruz, A. Draycott, and J.J. Neeteson. 1990. Decline in percentage N of C3 and C4 crops with increasing plant mass. Annals of Botany 66(4): 425–436.CrossRefGoogle Scholar
  22. Haag, H.P., A.R. Dechen, and Q.A.C. Carmello. 1987. Sugarcane mineral nutrition (Nutrição mineral da cana-de-açúcar). In Cana-de-açúcar, Cultivo e Utilização, ed. S.B. Paranhos, 88–162. Fundação Cargill: Campinas.Google Scholar
  23. Handley, L.L., and J.A. Raven. 1992. The use of natural abundance of nitrogen isotopes in plant physiology and ecology. Plant, Cell and Environment 15(9): 965–985.  https://doi.org/10.1111/j.1365-3040.1992.tb01650.x.CrossRefGoogle Scholar
  24. Herridge, D.F., M.B. Peoples, and R.M. Boddey. 2008. Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil 311(1–2): 1–18.  https://doi.org/10.1007/s11104-008-9668-3.CrossRefGoogle Scholar
  25. Hoefsloot, G., A.J. Termorshuizen, D.A. Watt, and M.D. Cramer. 2005. Biological nitrogen fixation is not a major contributor to the nitrogen demand of a commercially grown South African sugarcane cultivar. Plant and Soil 277(1): 85–96.  https://doi.org/10.1007/s11104-005-2581-0.Google Scholar
  26. Högberg, P. 1997. N-15 natural abundance in soil-plant system. New Phytologist 137(2): 179–203.  https://doi.org/10.1046/j.1469-8137.1997.00808.x.CrossRefGoogle Scholar
  27. Houngnandan, P., R.G.H. Yemadje, S.O. Oikeh, C.F. Djidohokpin, P. Boeckx, and O. Cleemput. 2008. Improved estimation of biological nitrogen fixation of soybean cultivars (Glycine max L. Merril) using 15N natural abundance technique. Biology and Fertility of Soils 45(2): 175–183.  https://doi.org/10.1007/s00374-008-0311-5.CrossRefGoogle Scholar
  28. Howell, T.A., and S.R. Evett. 2004. The Penman-Monteith method. USDA-Agricultural Research Service, Conservation & Production Research Laboratory, p. 1–14.Google Scholar
  29. Keskitalo, J., G. Bergquist, P. Gardeström, and S. Jansson. 2005. A cellular timetable of autumn senescence. Plant Physiology 139(4): 1635–1648.  https://doi.org/10.1104/pp.105.066845.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kim, K., D.E. Clay, C.G. Carlson, S.A. Clay, and T. Trooien. 2008. Do synergistic relationships between nitrogen and water influence the ability of corn to use nitrogen derived from fertilizer and soil. Agronomy Journal 100(3): 551–556.  https://doi.org/10.2134/agronj2007.0064.CrossRefGoogle Scholar
  31. Kolln, O.T., G.J.C. Gava, H. Cantarella, H.C.J. Franco, R.A.M. Uribe, L.E.R. Panutti, and P.C.O. Trivelin. 2016. Fertigated sugarcane yield and carbon isotope discrimination (Δ13C) related to nitrogen nutrition. Sugar Tech 18(4): 391–400.  https://doi.org/10.1007/s12355-015-0384-z.CrossRefGoogle Scholar
  32. Lasa, B., I. Irañeta, J. Muro, I. Irigoyen, and P.M.A. Tejo. 2011. Isotopic composition of maize as related to N-fertilization and irrigation in the Mediterranean region. Scientia Agricola 68(2): 182–190.  https://doi.org/10.1590/S0103-90162011000200008.CrossRefGoogle Scholar
  33. Li, D., and X. Wang. 2008. Nitrogen isotopic signature of soil-released nitric oxide (NO) after fertilizer application. Atmospheric Environment 42(19): 4747–4754.  https://doi.org/10.1016/j.atmosenv.2008.01.042.CrossRefGoogle Scholar
  34. Lima, E., R.M. Boddey, and J. Dobereiner. 1987. Quantification of biological nitrogen fixation associated with sugar cane using a 15 N aided nitrogen balance. Soil Biology & Biochemistry 19: 165–170.  https://doi.org/10.1016/0038-0717(87)90077-0.CrossRefGoogle Scholar
  35. Masclaux-Daubresse, C., F. Daniel-Edele, J. Dechorgnat, F. Chardon, L. Gaufichon, and A. Suzuki. 2010. Nitrogen uptake, assimilation and remobilisation in plants: challenges for sustainable and productive agriculture. Annals of Botany 105(7): 1141–1158.  https://doi.org/10.1093/aob/mcq028.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Massad, R.S., B. Loubet, A. Tuzet, and P. Cellier. 2008. Relationship between ammonia stomatal compensation point and nitrogen metabolism in arable crops: current status of knowledge and potential modelling approaches. Environmental Pollution 154(3): 390–403.  https://doi.org/10.1016/j.envpol.2008.01.022.CrossRefPubMedGoogle Scholar
  37. Meier, E.A., P.J. Thorburn, M.K. Wegener, and K.E. Basford. 2006. The availability of nitrogen from sugarcane trash on contrasting soils in the wet tropics of north Queensland. Nutrient Cycling in Agroecosystems 75(1): 101–114.  https://doi.org/10.1007/s10705-006-9015-0.CrossRefGoogle Scholar
  38. Moore, P.H., and F.C. Botha. 2013. Sugarcane: physiology, biochemistry and functional biology. Oxford: Wiley.CrossRefGoogle Scholar
  39. Munoz-Rojas, J., and J. Caballero-Mellado. 2003. Population dynamics of Gluconacetobacter diazotrophicus in sugarcane cultivars and its effect on plant growth. Microbial Ecology 46: 454–464.  https://doi.org/10.1007/s00248-003-0110-3.CrossRefPubMedGoogle Scholar
  40. Moutia, J.F.Y., S. Saumtally, S. Spaepen, and J. Vanderleyden. 2010. Plant growth promotion by Azospirillum sp. in sugarcane is influenced by genotype and drought stress. Plant and Soil 337(1): 233–242.  https://doi.org/10.1007/s11104-010-0519-7.CrossRefGoogle Scholar
  41. Muthukumarasamy, R., G. Revathi, and C. Lakshminarasimhan. 1999. Influence of N fertilisation on the isolation of Acetobacter diazotrophicus and Herbaspirillum spp. from Indian sugarcane varieties. Biology and Fertility of Soils 29: 157–164.CrossRefGoogle Scholar
  42. Ng Kee Kwong, K.F., and J. Deville. 1994. Application of 15N-labelled urea to sugar cane through a drip irrigation system in Mauritius. Fertilizer Research 239(3): 223–228.  https://doi.org/10.1007/BF00750250.CrossRefGoogle Scholar
  43. Ng Kee Kwong, K.F., J.P. Paul, and J. Deville. 1999. Drip fertigation - a means for reducing fertilizer nitrogen to sugarcane. Experimental Agriculture 35(1): 31–37.CrossRefGoogle Scholar
  44. Oliveira, A.L.M., S. Urquiaga, J. Dobereiner, and J.I. Baldani. 2002. The effect of inoculating endophitic N2-fixing bacteria on micropropagated sugarcane plants. Plant and Soil 242(2): 205–215.  https://doi.org/10.1023/A:1016249704336.CrossRefGoogle Scholar
  45. Oliveira, A.L.M., E.D. Canuto, S. Urquiaga, V.M. Reis, and J.I. Baldani. 2006. Yield of micropropagated sugarcane varieties in different soil types following inoculation with diazotrophic bacteria. Plant and Soil 284(1–2): 23–32.  https://doi.org/10.1007/s11104-006-0025-0.CrossRefGoogle Scholar
  46. Oliveira, E.C.A.D., G.J.C. Gava, P.C.O. Trivelin, R. Otto, and H.C.J. Franco. 2013. Determining a critical nitrogen dilution curve for sugarcane. Journal Plant Nutricion Soil Science 176(5): 712–723.  https://doi.org/10.1002/jpln.201200133.Google Scholar
  47. Oliveira, A.L.M., E.L. Canuto, E.E. Silva, V.M. Reis, and J.I. Baldani. 2004. Survival of endophytic diazotrophic bacteria in soil under different moisture levels. Brazilian Journal of Microbiology 35: 295–299.  https://doi.org/10.1590/S1517-83822004000300005.CrossRefGoogle Scholar
  48. Otto, R., S.A.Q. Castro, E. Mariano, S.G.Q. Castro, H.C.J. Franco, and P.C.O. Trivelin. 2016. Nitrogen use efficienty for sugarcane-biofuel production: what is next? Bioenergy Research 9(4): 1272–1289.  https://doi.org/10.1007/s12155-016-9763-x. (online first).CrossRefGoogle Scholar
  49. Robinson, D. 2001. δ15N as an integrator of the nitrogen cycle. Trends in Ecology & Evolution 16(3): 153–162.  https://doi.org/10.1016/S0169-5347(00)02098-X.CrossRefGoogle Scholar
  50. Rossetto, R., F.L.F. Dias, M.G.A. Landell, H. Cantarella, S. Tavares, A.C. Vitti, and D. Perecin. 2010. N and K fertilisation of sugarcane ratoons harvested withou burning. Proceedings of the International Society of Sugar Cane Technologists 27: 1–8.Google Scholar
  51. Scarpare, F.V., T.A.D. Hernandes, S.T. Ruiz-Corrêa, O.T. Kolln, G.J.C. Gava, L.N.S. Santos, and R.L. Victoria. 2016. Sugarcane water footprint under different management practices in Brazil: Tietê/Jacaré watershed assessment. Journal of Cleaner Production 112: 4576–4584.  https://doi.org/10.1016/j.jclepro.2015.05.107.CrossRefGoogle Scholar
  52. Schultz, N., J.A. d Silva, J.S. Sousa, R.C. Monteiro, R.P. Oliveira, V.A. Chaves, W. Pereira, M.F. d Silva, J.I. Baldani, R.M. Boddey, V.M. Reis, and S. Urquiaga. 2014. Inoculation of sugarcane with diazotrophic bacteria. Revista Brasileira de Ciência do Solo 38: 407–414.  https://doi.org/10.1590/S0100-06832014000200005.CrossRefGoogle Scholar
  53. SOIL Survey STAFF. 2010. Keys to soil taxonomy, 11th ed. Washington, DC: USDA-Natural Resources Conservation Service.Google Scholar
  54. Suman, A., A. Gaur, A.K. Shrivastava, P. Singh, J. Singh, and R.L. Yadav. 2007. Nitrogen use efficiency of sugarcane in relation to its BNF potential and population of endophytic diazotrophs at different N levels. Plant Growth Regulation 54(1): 1–11.  https://doi.org/10.1007/s10725-007-9219-6.CrossRefGoogle Scholar
  55. Thorburn, P.J., I.K. Dart, I.M. Biggs, C.P. Baillie, M.A. Smith, and B.A. Keating. 2003. The fate of nitrogen applied to sugarcane by trickle irrigation. Irrigation Science 22(3): 201–209.  https://doi.org/10.1007/s00271-003-0086-2.CrossRefGoogle Scholar
  56. Trivelin, P.C.O., A.C. Vitti, M.W. Oliveira, G.J.C. Gava, and G.A. Sarriés. 2002. Utilização de nitrogênio e produtividade da cana-de-açúcar (cana-planta) em solo arenoso com incorporação de resíduos da cultura. Revista Brasileira de Ciência do Solo 26(3): 636–646.  https://doi.org/10.1590/S0100-06832002000300008.CrossRefGoogle Scholar
  57. Uribe, R.A.M., G.J.C. Gava, J.C.C. Saad, and O.T. Kölln. 2013. Ratton sugarcane yield integrated drip-irrigation and nitrogen fertilization. Engenharia Agrícola 33: 1124–1133.  https://doi.org/10.1590/S0100-69162013000600005.CrossRefGoogle Scholar
  58. Urquiaga, S., K.H.S. Cruz, and R.M. Boddey. 1992. Contribution of nitrogen fixation to sugar cane: Nitrogen-15 and nitrogen balance estimates. Soil Science Society of American Journal 56: 105–114.CrossRefGoogle Scholar
  59. Urquiaga, S., R.P. Xavier, R.F. Morais, R.B. Batista, N. Schultz, J.M. Leite, J.M. Sá, K.P. Barbosa, A.S. Resende, B.J.R. Alves, and R.M. Boddey. 2011. Evidence from field nitrogen balance and 15N natural abundance data for the contribution of biological N2 fixation to Brazilian sugarcane varieties. Plant and Soil 356(1): 5–21.  https://doi.org/10.1007/s11104-011-1016-3.Google Scholar
  60. Vallis, I., V.R. Catchpoole, R.M. Hughes, R.J.K. Myers, D.R. Ridge, and K.L. Weier. 1996. Recovery in plants and soils of 15N applied as subsurface bands of urea to sugarcane. Australian Journal of Agricultural Research 47(3): 355–370.CrossRefGoogle Scholar
  61. van Raij, B., J.C. Andrade, H. Cantarella, and A.J. Quaggio (eds.). 2001. Análise química para avaliação da fertilidade de solos tropicais. Campinas: IAC. v. 64.Google Scholar
  62. Vitòria, L., N. Otero, A. Soler, and A. Canals. 2004. Fertilizer characterization: isotopic data (N, S, O, C and Sr). Environmental Science and Technology 38(12): 3254–3262.  https://doi.org/10.1021/es0348187.CrossRefPubMedGoogle Scholar
  63. Werner, R.A., and H.L. Schmidt. 2002. The in vivo nitrogen isotope discrimination among organic plant compounds. Phytochemistry 61(5): 465–484.  https://doi.org/10.1016/S0031-9422(02)00204-2.CrossRefPubMedGoogle Scholar
  64. Wiedenfeld, B., and J. Enciso. 2008. Sugarcane responses to irrigation and nitrogen in semiarid south Texas. Agronomy Journal 100(3): 665–671.  https://doi.org/10.2134/agronj2007.0286.CrossRefGoogle Scholar
  65. Yoneyama, T., T. Muraoka, T.H. Kim, E.V. Dacanay, and Y. Nakanishi. 1997. The natural 15N abundance of sugarcane and neighbouring plants in Brazil, the Philippines and Miyako (Japan). Plant and Soil 189(2): 239–244.  https://doi.org/10.1023/A:1004288008199.CrossRefGoogle Scholar

Copyright information

© Society for Sugar Research & Promotion 2018

Authors and Affiliations

  • Glauber José de Castro Gava
    • 1
    • 2
  • Fábio Vale Scarpare
    • 3
    • 4
  • Heitor Cantarella
    • 5
  • Oriel Tiago Kölln
    • 1
  • Simone Toni Ruiz-Corrêa
    • 6
  • Adolfo Bergamo Arlanch
    • 2
  • Paulo Cesar Ocheuze Trivelin
    • 3
  1. 1.Agência Paulista de Tecnologias dos AgronegóciosUnidade de Pesquisa e Desenvolvimento “Hélio de Moraes”JaúBrazil
  2. 2.Programa de Pós-Graduação em Irrigação e DrenagemUniversidade Estadual PaulistaBotucatuBrazil
  3. 3.Centro de Energia Nuclear na Agricultura (CENA)Universidade de São Paulo (USP)PiracicabaBrazil
  4. 4.Faculdade de Engenharia Mecânica (FEM)Universidade Estadual de Campinas (UNICAMP)CampinasBrazil
  5. 5.Instituto Agronômico de Campinas (IAC)CampinasBrazil
  6. 6.Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ), Universidade de São Paulo (USP)PiracicabaBrazil

Personalised recommendations