Skip to main content
Log in

Isolation, Transformation and Overexpression of Sugarcane SoP5CS Gene for Drought Tolerance Improvement

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Drought is one of the very important growth-limiting factors for sugarcane production in China. Δ1-pyrroline-5-carboxylate synthase (P5CS) is the rate-limiting enzyme in proline synthesis, and it plays an important role in plant response to drought stress. In this study, sugarcane P5CS (SoP5CS) gene was cloned and submitted in GenBank with the accession number KJ546350. The gene SoP5CS was 2151 bp in length, encoding 716 amino acids with a predicted molecular weight of 77.73 kDa and an isoelectric point of 6.14. The qRT-PCR analysis showed that the expression of SoP5CS was higher in leaf than in root and stalk, and strongly induced under ABA, PEG, NaCl and 4 °C treatments. The plant excessive expression vector of SoP5CS was built and transformed into sugarcane calli by Agrobacterium-mediated transformation method, and transgenic sugarcane plants were obtained. Under drought stress, some transgenic lines with overexpressed SoP5CS showed significantly higher in SoP5CS expression level, proline accumulation, abscisic acid content, superoxide dismutase activity and relative water content but lower MDA content and chlorophyll (SPAD value) decrease as compared with the WT plants. Moreover, all the transgenic plants increased drought stress tolerance. Our findings indicated that SoP5CS plays an important role in response to abiotic stresses and overexpression of SoP5CS can improve drought tolerance in transgenic sugarcane plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Armengaud, P., L. Thiery, N. Buhot, M.G. Grenier-de, and A. Savouré. 2004. Transcriptional regulation of proline biosynthesis in Medicago truncatula reveals developmental and environmental specific features. Physiologia Plantarum 120: 442–450.

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar-Mathur, P., V. Vadez, M. Jyostna Devi, M. Lavanya, G. Vani, and K.K. Sharma. 2009. Genetic engineering of chickpea (Cicer arietinum L.) with the P5CSF129A gene for osmoregulation with implications on drought tolerance. Molecular Breeding 23(4): 591–606.

    Article  CAS  Google Scholar 

  • Bower, R., and R. Birch. 1992. Transgenic sugarcane plants via microprojectile bombardment. The Plant Journal 2(3): 409–416.

    Article  CAS  Google Scholar 

  • Cao, L., L. Han, H.L. Zhang, H.B. Xin, M. Imtiaz, M.F. Yi, Z.Y. Sun, G.S. Ju, Y.Q. Qian, and J.X. Liu. 2015. Isolation and characterization of pyrroline-5-carboxylate synthetase gene from perennial ryegrass (Lolium perenne L.). Acta Physiologiae Plantarum 37(3): 1–9.

    Article  Google Scholar 

  • Chen, J.B., X.Y. Zhang, R.L. Jing, M.W. Blair, X.G. Mao, and S.M. Wang. 2010. Cloning and genetic diversity analysis of a new P5CS gene from common bean (Phaseolus vulgaris L.). Theoretical and Applied Genetics 120(7): 1393–1404.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J.B., J.W. Yang, Z.Y. Zhang, X.F. Feng, and S.M. Wang. 2013. Two P5CS genes from common bean exhibiting different tolerance to salt stress in transgenic Arabidopsis. Journal of Genetics 92(3): 461–469.

    Article  CAS  PubMed  Google Scholar 

  • Chu, H.M., N.T.T. Huong, H.L. Chu, N.T. Anh, V.S. Le, and H.H. Chu. 2010. Characteristics of the gene encoding pyrroline-5-carboxylate synthase (P5CS) in Vietnamese soybean cultivars (Glycine max L. Merrill). International Conference on Biology, Environment and Chemistry (ICBEC).

  • Delauney, A.J., and D.P.S. Verma. 1993. Proline biosynthesis and osmoregulation in plants. Plant Journal 4: 215–223

    Article  CAS  Google Scholar 

  • Dibax, R., C. Deschamps, J.C. Bespalhok Filho, L.G.E. Vieira, H.B.C. Molinari, M.K.F.D. Campos, and M. Quoirin. 2010. Organogenesis and Agrobacterium tumefaciens-mediated transformation of Eucalyptus saligna, with P5CS gene. Biologia Plantarum 54(1): 6–12.

    Article  Google Scholar 

  • Feng, C.L., L.B. Shen, T.T. Zhao, J.G. Wang, G.R. Xiong, and S.Z. Zhang. 2011. Genetic transformation of CryIAb gene into sugarcane. Chinese Journal of Tropical Agriculture 31(9): 21–26.

    CAS  Google Scholar 

  • Fujita, T., A. Maggio, M. Garciarios, R.A. Bressan, and L.N. Csonka. 1998. Comparative analysis of the regulation of expression and structures of two evolutionarily divergent genes for Δ1-pyrroline-5-carboxylate synthetase from tomato. Plant Physiology 118(2): 661–674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan, C.F., J. Ji, W.Z. Guan, Y.H. Feng, X.Z. Li, C. Jin, J. Li, Y.R. Wang, and G. Wang. 2014. A Lycium chinense-derived P5CS-like gene is regulated by water deficit-induced endogenous abscisic acid and overexpression of this gene enhances tolerance to water deficit stress in Arabidopsis. Molecular Breeding 34: 1109–1124.

    Article  CAS  Google Scholar 

  • Guerzoni, J.T.S., N.G. Belintani, R.M.P. Moreira, A.A. Hoshino, D.S. Domingues, J.C.B. Filho, and L.G.E. Vieira. 2014. Stress-induced Δ1-pyrroline-5-carboxylate synthetase (P5CS) gene confers tolerance to salt stress in transgenic sugarcane. Acta Physiologiae Plantarum 36(9): 2309–2319.

    Article  CAS  Google Scholar 

  • Guo, X. 2007. Cloning and functional analysis of P5CS from Apocynum venetum L. and Populus euphratica Oliv. Ph.D. Dissertation of Chinese Academy of Agricultural Sciences.

  • Gupta, V., S. Raghuvanshi, A. Gupta, N. Saini, A. Gaur, and M.S. Khan. 2010. The water-deficit stress and red-rot-related genes in sugarcane. Functional & Integrative Genomics 10: 207–214.

    Article  CAS  Google Scholar 

  • Hien, D.T., M. Jacobs, G. Angenon, C. Hermans, T.T. Thu, V.L. Son, and N.H. Roosens. 2003. Proline accumulation and Δ1-pyrroline-5-carboxylate synthetase gene properties in three rice cultivars differing in salinity and drought stress. Plant Science 165: 1059–1068.

    Article  CAS  Google Scholar 

  • Hmida-Sayari, A., R. Gargouribouzid, A. Bidani, L. Jaoua, A. Savoure, and S. Jaoua. 2005. Overexpression of delta1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Science 169(4): 746–752.

    Article  CAS  Google Scholar 

  • Hu, C.A.A., A.J. Delauney, and D.P.S. Verma. 1992. A bifunctional enzyme (△1-pyrroline-5 -carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proceedings of National Academy of Science of the United States of America 89: 9354–9358

    Article  CAS  Google Scholar 

  • Huang, Z., Z.R. Zhou, H.H. Huang, C.X. He, Z.B. Zhang, H.S. Wang, and J.M. Li. 2010. Cloning, analysis and expression of a drought-related gene MeP5CS from melon. Acta Horticulturae Sinica 37(1): 1279–1286.

    CAS  Google Scholar 

  • Hur, J., K.H. Jung, C.H. Lee, and G. An. 2004. Stress-inducible OsP5CS2 gene is essential for salt and cold tolerance in rice. Plant Science 167: 417–426.

    Article  CAS  Google Scholar 

  • Igarashi, Y., Y. Yoshiba, Y. Sanada, K. Yamaguchi-Shinozaki, K. Wada, and K. Shinozaki. 1997. Characterization of the gene for Δ1-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. Plant Molecular Biology 33: 857–865.

    Article  CAS  PubMed  Google Scholar 

  • Iskandar, H.M., D. Widyaningrum, and S. Suhandono. 2014. Cloning and characterization of P5CS1 and P5CS2 genes from Saccharum officinarum L. under drought stress. Journal of Tropical Crop Science 1(1): 23–30.

    Google Scholar 

  • Jiao, R., G.S. Liu, H.B. Liu, S.L. Wang, N. Hou, Q.Z. Wang, Y.R. Jin, Y. Bai, G.L. Feng, C.K. Liu, X.G. Feng, and X.M. Hu. 2012. Cloning and expression analysis of osmotic stress tolerance gene NtP5CS in Nicotiana tabacum. Acta Tabacaria Sinica 18(2): 49–57.

    CAS  Google Scholar 

  • Karthikeyan, A., S.K. Pandian, and M. Ramesh. 2011. Transgenic indica rice cv. ADT 43 expressing a 1-pyrroline-5-carboxylate synthetase (P5CS) gene from Vigna aconitifolia demonstrates salt tolerance. Plant Cell, Tissue and Organ Culture 107(3): 383–395.

    Article  CAS  Google Scholar 

  • Kim, S.Y., J.H. Lim, M.R. Park, Y.J. Kim, T.I. Park, Y.W. Seo, K.G. Choi, and S.J. Yun. 2005. Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barley roots under saline stress. Journal of Biochemistry and Molecular Biology 38: 218–224.

    CAS  PubMed  Google Scholar 

  • Kishor, P.B.K., Z. Hong, G.H. Miao, C.A.A. Hu, and D.P.S. Verma. 1995. Over expression of 1-pyrroline-5-carboxylate synthetase increase proline production and confers osmotolerance in transgenic plants. Plant Physiology 108: 1387–1394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krasensky, J., and C. Jonak. 2012. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany 63: 1593–1608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubala, S., Ł. Wojtyla, M. Quinet, K. Lechowska, S. Lutts, and M. Garnczarska. 2015. Enhanced expression of the proline synthesis gene P5CSA in relation to seed osmopriming improvement of Brassica napus germination under salinity stress. Journal of Plant Physiology 183(4): 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, T., M.R. Uzma, Z.Abbas Khan, and G.M. Ali. 2014. Genetic improvement of sugarcane for drought and salinity stress tolerance using Arabidopsis vacuolar pyrophosphatase (AVP1) gene. Molecular Biotechnology 56(3): 199–209.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, V., V. Shriram, P.B.K. Kishor, N. Jawali, and M.G. Shitole. 2010. Enhanced proline accumulation and salt stress tolerance of transgenic indica rice by over-expressing P5CSF129A gene. Plant Biotechnology Reports 4: 37–48.

    Article  Google Scholar 

  • Li Y.R., and L.T. Yang. 2015. Sugarcane agriculture and sugar industry in China. Sugar Tech 17(1): 1–8

    Article  Google Scholar 

  • Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Molinari, H.B.C., C.J. Marur, E. Daros, M.K.F. Campos, J.F.R.P. Carvalho, J.C.F. Bespalhok, L.F.P. Pereira, and L.G.E. Vieira. 2007. Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): Osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiologia Plantarum 130: 218–229.

    Article  CAS  Google Scholar 

  • Moore, K., and L.J. Roberts. 1998. Measurement of lipid peroxidation. Free Radical Research 28: 659–671.

    Article  CAS  PubMed  Google Scholar 

  • Neill, S.J., R. Desikan, A. Clarke, R.D. Hurst, and J.T. Hancock. 2002. Hydrogen peroxide and nitric oxide as signalling molecules in plants. Journal of Experimental Botany 53: 1237–1247.

    Article  CAS  PubMed  Google Scholar 

  • Phan, T.T., J. Li, B. Sun, J.Y. Liu, W.H. Zhao, C. Huang, L.T. Yang, and Y.R. Li. 2017. ATP-citrate lyase gene (SOACLA-1), a novel ACLA gene in sugarcane, and its overexpression enhance drought tolerance of transgenic tobacco. Sugar Tech 19(3): 258–269.

    Article  CAS  Google Scholar 

  • Ramadan, A.M., and S.E. Hassanein. 2014. Characterization of P5CS gene in Calotropis procera plant from the de novo assembled transcriptome contigs of the high-throughput sequencing dataset. Comptes Rendus Biologies 337: 683–690.

    Article  PubMed  Google Scholar 

  • Ray, P.D., B. Huang, and Y. Tsuj. 2012. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular Signalling 24(5): 981–990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romman, A.S.M., T.G. Ammari, L.A. Irshaid, N.M. Salameh, M.K. Hasan, and H.S. Hasan. 2011. Cloning and expression patterns of the hvp5cs gene from barley (Hordeum vulgare). Journal of Food, Agriculture and Environment 9(3 & 4): 279–284.

    Google Scholar 

  • Savouré, A., S. Jaoua, X.J. Hua, W. Ardiles, M. Van Montagu, and N. Verbruggen. 1995. Isolation, characterization, and chromosomal location of gene coding the Δ1-pyrroline- carboxylate synthetase in Arabidopsis thaliana. FEBS Letters 372: 13–19.

    Article  PubMed  Google Scholar 

  • Sharma, P., A.B. Jha, R.S. Dubey, and M. Pessarakli. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany 12: 1–26.

    Article  Google Scholar 

  • Smyth, D.R. 1997. Gene silencing: Cosuppression at a distance. Current Biology 7: 793–796.

    Article  Google Scholar 

  • Strizhov, N., E. Abraham, L. Okresz, S. Blickling, A. Zilberstein, J. Schell, C. Koncz, and L. Szabados. 1997. Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant Journal 12: 557–569.

    Article  CAS  PubMed  Google Scholar 

  • Su, M., X.F. Li, X.Y. Ma, X.J. Peng, A.G. Zhao, L.Q. Cheng, S.Y. Chen, and G.S. Liu. 2011. Cloning two P5CS genes from bioenergy sorghum and their expression profiles under abiotic stresses and MeJA treatment. Plant Science 181: 652–659.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z.Z., S.Z. Zhang, B.P. Yang, and Y.R. Li. 2005. Trehalose synthase gene transfer mediated by Agrobacterium tumefaciens enhances resistance to osmotic stress in sugarcane. Sugar Tech 7(1): 49–54.

    Article  CAS  Google Scholar 

  • Wang, S., K.K. Zhang, X. Huang, Y.J. Fan, L.T. Yang, and Y.R. Li. 2015. Cloning and functional analysis of thylakoidal ascorbate peroxidase (TAPX) gene in sugarcane. Sugar Tech 17(4): 356–366.

    Article  CAS  Google Scholar 

  • Wei, C., Q. Cui, X.Q. Zhang, Y.Q. Zhao, and G.X. Jia. 2016. Three P5CS genes including a novel one from Lilium regale play distinct roles in osmotic, drought and salt stress tolerance. Journal of Plant Biology 59(5): 456–466.

    Article  CAS  Google Scholar 

  • Xu, L.P., Y.X. Que, J.S. Xu, S.R. Fang, M.Q. Zhang, Y.Q. Chen, and R.K. Chen. 2008. Establishment of genetic transformation system and obtaining transgenic sugarcane (var. Badila) transformed with RS gene. Sugar Tech 10(2): 128–132.

    Article  CAS  Google Scholar 

  • Xu, B., W. Ren, A.K. Xu, Z.F. Wang, and Q.Z. Sun. 2011. Molecular cloning and expression analysis of delta 1-pyrroline-5-carboxylate synthetase(P5CS)gene in Puccinellia chinampoensis. Acta Agriculturae Boreali-Sinica 26(6): 20–26.

    CAS  Google Scholar 

  • Yamchi, A., F.R. Jazii, A. Mousavi, A.A. Karkhane, and S. Renu. 2007. Proline accumulation in transgenic tobacco as a result of expression of Arabidopsis Δ1-pyrroline-5-carboxylate synthetase (P5CS) during osmotic stress. Journal of Plant Biochemistry and Biotechnology 16(1): 9–15.

    Article  CAS  Google Scholar 

  • Zhang, C.B., H.K. Zhao, Q.Y. Li, X.D. Liu, B. Sen, and Y.S. Dong. 2008. Molecular cloning and sequence analysis of Δ1-pyrroline-5-carboxylate synthetase (P5CS) gene in wild soybean. Soybean Science 27(6): 915–920.

    CAS  Google Scholar 

  • Zhangsun, D.T., S.L. Luo, R.K. Chen, and K.X. Tang. 2007. Improved Agrobacterium-mediated genetic transformation of GNA transgenic sugarcane. Biologia 62(4): 386–393.

    Article  CAS  Google Scholar 

  • Zheng, L.L., Z.H. Dang, H.Y. Li, H.R. Zhang, S.B. Wu, and Y.C. Wang. 2014. Isolation and characterization of a Δ1-pyrroline-5-carboxylate synthetase (NtP5CS) from Nitraria tangutorum Bobr. and functional comparison with its Arabidopsis homologue. Molecular Biology Reports 41: 563–572.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, H., J. Qian, M.D. Zhao, F. Li, W. Tong, L. Li, R.J. Fang, W.G. Zhao, and H.J. Kim. 2016. Cloning and sequence analysis of the Δ1-pyrroline-5-carboxylate synthase gene (MP5CS), from mulberry (Morus alba), and patterns of gene expression under abiotic stress conditions. Journal of Horticultural Science & Biotechnology 91(1): 100–108.

    Article  CAS  Google Scholar 

  • Zhuang, G.Q., B. Li, H.Y. Guo, J.L. Liu, and F. Chen. 2011. Molecular cloning and characterization of P5CS gene from Jatropha curcas L. African Journal of Biotechnology 10(66): 14803–14811.

    Article  CAS  Google Scholar 

Download references

Funding

The present study was supported by the grants from the National High Technology Research and Development Program (“863” Program) of China (2013AA102604), International Scientific Cooperation Program of China (2013DFA31600), Guangxi Special Funds for Bagui Scholars and Distinguished Experts (2013-03), Fund of Guangxi Key Laboratory of Sugarcane Genetic Improvement (12-K-05-01), Fund for Guangxi Innovation Teams of Modern Agriculture Technology (gjnytxgxcxtd-03-01) and Fund of Guangxi Academy of Agricultural Sciences (2015YT02).

Author information

Authors and Affiliations

Authors

Contributions

JL, YRL and LTY design the experiment, JL, TTP, YXX and LTY conducted the experiment, JL, YRL and LTY wrote the manuscript, YRL revised and finalized the manuscript.

Corresponding authors

Correspondence to Yang-Rui Li or Li-Tao Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Phan, TT., Li, YR. et al. Isolation, Transformation and Overexpression of Sugarcane SoP5CS Gene for Drought Tolerance Improvement. Sugar Tech 20, 464–473 (2018). https://doi.org/10.1007/s12355-017-0568-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-017-0568-9

Keywords