Enhancing Bioconversion Potential of Duckweed by Acid and Hydrogen Peroxide Pretreatment Methods to Improve Biofuel Productivity


One of the main triggers of the climate change is the consumption of fossil derivative fuel to satisfy the energy need, and also it is clearly known that the future of the fossil fuel supply is limited. That is why, finding and using alternative, sustainable, renewable, and eco-friendly energy sources are inevitable to fight climate change and to reduce the global warming. Biomass is a well-known renewable material for energy production and is called as biofuels. There are some limitations to utilize the biomass effectively, because of the structure of their molecular forms. For this very reason, the pretreatment pathways to increase the biomass sugar concentration potential to increase the bioconversion potential are attempted in this study. Two different pretreatment methods, i.e., hydrogen peroxide and acid, were applied to biomass, which in this case is duckweed, taken from artificial pond at Niğde, Turkey. In order to determine important factors of the processes, Plackett–Burman design was used. Chemicals dosages, timing, temperature, solid ratio, and mesh size are identified using this methodology to obtain the interested results. Box–Behnken statistical design method was applied to make the optimization of the factors chosen from the factorial design. Consequently, Box–Behnken test indicated that acid pretreatment method showed slightly better results than the hydrogen peroxide application per total sugar concentration, which are 0.60 and 0.48 g/L, respectively.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. Antonopoulou, G., D. Vayenas, and G. Lyberatos. 2016. Ethanol and hydrogen production from sunflower straw: The effect of pretreatment on the whole slurry fermentation. Biochemical Engineering Journal 116: 65–74. doi:10.1016/j.bej.2016.06.014.

    CAS  Article  Google Scholar 

  2. Candido, R.G., G.G. Godoy, and A.R. Gonçalve. 2012. Study of sugarcane bagasse pretreatment with sulfuric acid as a step of cellulose obtaining. International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering 810: 101–105.

    Google Scholar 

  3. Candido, R.G., G.G. Godoy, and A. Gonçalves. 2017. Characterization and application of cellulose acetate synthesized from sugarcane bagasse. Carbohydrate Polymers. doi:10.1016/j.carbpol.2017.03.057.

    PubMed  Google Scholar 

  4. Dubois, M., K.A. Gilles, J.K. Hamilton, P.A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28: 350–356. doi:10.1021/ac60111a017.

    CAS  Article  Google Scholar 

  5. Flach, Bob, Sabine Lieberz, Marcela Rondon, Barry Williams, and Carrie Teiken. 2015. EU Biofuels Annual 2015. Global Agricultural Information Network. doi:NL5028.

  6. Guan, G., Z. Zhang, H. Ding, M. Li, D. Shi, M. Zhu, and L. Xia. 2015. Enhanced degradation of lignin in corn stalk by combined method of Aspergillus oryzae solid state fermentation and H2O2 treatment. Biomass and Bioenergy 81: 224–233. doi:10.1016/j.biombioe.2015.07.008.

    CAS  Article  Google Scholar 

  7. Gündoğdu, Keskin, İrem Deniz Tuğba, Gülizar Çalışkan, Erdem Sefa Şahin, and Nuri Azbar. 2016. Experimental design methods for bioengineering applications. Critical Reviews in Biotechnology 36: 368–388. doi:10.3109/07388551.2014.973014.

    Article  Google Scholar 

  8. Gungormusler, M., C. Gonen, G. Ozdemir, and N. Azbar. 2010. Fermentation medium optimization for 1,3-propanediol production using Taguchi and Box–Behnken experimental designs. Fresenius Environmental Bulletin 19: 2840–2847.

    CAS  Google Scholar 

  9. Güven, Güray, Altunay Perendeci, and Abdurrahman Tanyolaç. 2008. Electrochemical treatment of deproteinated whey wastewater and optimization of treatment conditions with response surface methodology. Journal of Hazardous Materials 157: 69–78. doi:10.1016/j.jhazmat.2007.12.082.

    Article  PubMed  Google Scholar 

  10. Hivechi, Ahmad, and S. Hajir Bahrami. 2016. A new cellulose purification approach for higher degree of polymerization: Modeling, optimization and characterization. Carbohydrate Polymers 152: 280–286. doi:10.1016/j.carbpol.2016.07.001.

    CAS  Article  PubMed  Google Scholar 

  11. Höhne, N., T. Kuramochi, C. Warnecke, F. Röser, H. Fekete, M. Hagemann, T. Day. 2017. The Paris Agreement: Resolving the inconsistency between global goals and national contributions. Climate Policy 17: 16–32. doi:10.1080/14693062.2016.1218320.

    Article  Google Scholar 

  12. Imamoglu, Esra, and Fazilet Vardar Sukan. 2014. The effects of single and combined cellulosic agrowaste substrates on bioethanol production. Fuel 134: 477–484. doi:10.1016/j.fuel.2014.05.087.

    CAS  Article  Google Scholar 

  13. Izmirlioglu, Gulten, and Ali Demirci. 2016. Ethanol production in biofilm reactors from potato waste hydrolysate and optimization of growth parameters for Saccharomyces cerevisiae. Fuel 181: 643–651. doi:10.1016/j.fuel.2016.05.047.

    CAS  Article  Google Scholar 

  14. Joo, J., S.J. Lee, H.Y. Yoo, Y. Kim, M. Jang, J. Lee, S.O. Han, S.W. Kim, and C. Park. 2016. Improved fermentation of lignocellulosic hydrolysates to 2,3-butanediol through investigation of effects of inhibitory compounds by Enterobacter aerogenes. Chemical Engineering Journal 306: 916–924. doi:10.1016/j.cej.2016.07.113.

    CAS  Article  Google Scholar 

  15. Katsimpouras, Constantinos, Paul Christakopoulos, and Evangelos Topakas. 2016. Acetic acid-catalyzed hydrothermal pretreatment of corn stover for the production of bioethanol at high-solids content. Bioprocess and Biosystems Engineering 39: 1415–1423. doi:10.1007/s00449-016-1618-5.

    CAS  Article  PubMed  Google Scholar 

  16. Katukuri, N.R., S. Fu, S. He, X. Xu, X. Yuan, Z. Yang, and R.-B. Guo. 2017. Enhanced methane production of Miscanthus floridulus by hydrogen peroxide pretreatment. Fuel 199: 526–566. doi:10.1016/j.fuel.2017.03.014.

    Article  Google Scholar 

  17. Li, K., J. Qin, C. Liu, and F. Bai. 2016. Optimization of pretreatment, enzymatic hydrolysis and fermentation for more efficient ethanol production by Jerusalem artichoke stalk. Bioresource Technology 221: 188–194. doi:10.1016/j.biortech.2016.09.021.

    CAS  Article  PubMed  Google Scholar 

  18. Liu, Junying, Yunmeng Song, Yuhuan Liu, and Roger Ruan. 2015. Optimization of growth conditions toward two-stage cultivation for lipid production of chlorella vulgaris. Environmental Progress and Sustainable Energy 34: 1801–1807. doi:10.1002/ep.12162.

    CAS  Article  Google Scholar 

  19. Martínez-Patiño, J.C., E. Ruiz, I. Romero, C. Cara, J.C. López-Linares, and E. Castro. 2017. Combined acid/alkaline–peroxide pretreatment of olive tree biomass for bioethanol production. Bioresource Technology 239: 326–335. doi:10.1016/j.biortech.2017.04.102.

    Article  PubMed  Google Scholar 

  20. Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31: 426–428. doi:10.1021/ac60147a030.

    CAS  Article  Google Scholar 

  21. Nikolaidis, P., and A. Poullikkas. 2017. A comparative overview of hydrogen production processes. Renewable and Sustainable Energy Reviews 67: 597–611. doi:10.1016/j.rser.2016.09.044.

    CAS  Article  Google Scholar 

  22. Partida-Sedas, G., N. Montes-García, O. Carvajal-Zarrabal, L. López-Zamora, J. Gómez-Rodríguez, and M.G. Aguilar-Uscanga. 2017. Optimization of hydrolysis process to obtain fermentable sugars from sweet sorghum bagasse using a Box–Behnken design. Sugar Tech 19: 317–325. doi:10.1007/s12355-016-0461-y.

    CAS  Article  Google Scholar 

  23. Román-Figueroa, C., N. Montenegro, and M. Paneque. 2017. Bioenergy potential from crop residue biomass in Araucania Region of Chile. Renewable Energy 102: 170–177. doi:10.1016/j.renene.2016.10.013.

    Article  Google Scholar 

  24. Sasikumar, Ezhumalai, and Thangavelu Viruthagiri. 2008. Optimization of process conditions using response surface methodology (RSM) for ethanol production from pretreated sugarcane bagasse: Kinetics and modeling. BioEnergy Research 1: 239–247. doi:10.1007/s12155-008-9018-6.

    Article  Google Scholar 

  25. Soda, Satoshi, Takeshi Ohchi, Jusakulvijit Piradee, Yuichiro Takai, and Michihiko Ike. 2015. Duckweed biomass as a renewable biorefinery feedstock: Ethanol and succinate production from Wolffia globosa. Biomass and Bioenergy 81: 364–368. doi:10.1016/j.biombioe.2015.07.020.

    CAS  Article  Google Scholar 

  26. Yasar, Abdullah, Rizwan Rasheed, Amtul Bari Tabinda, Aleena Tahir, and Friha Sarwar. 2017. Life cycle assessment of a medium commercial scale biogas plant and nutritional assessment of effluent slurry. Renewable and Sustainable Energy Reviews 67: 364–371. doi:10.1016/j.rser.2016.09.026.

    CAS  Article  Google Scholar 

  27. Yucel, Y., C. Demir, N. Dizge, and B. Keskinler. 2014. Methods for lipase immobilization and their use for biodiesel production from vegetable oil. Energy Sources Part A—Recovery Utilization and Environmental Effects 36: 1203–1211. doi:10.1080/15567036.2010.545805.

    CAS  Article  Google Scholar 

  28. Zhao, X., G.K. Moates, A. Elliston, D.R. Wilson, M.J. Coleman, and K.W. Waldron. 2015. Simultaneous saccharification and fermentation of steam exploded duckweed: Improvement of the ethanol yield by increasing yeast titre. Bioresource Technology 194: 263–269. doi:10.1016/j.biortech.2015.06.131.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references


This project was supported by Department of Scientific Research Project of Ömer Halisdemir University, under Grant No. BAP-FEB2015-43-BAGEP 487.

Author information



Corresponding author

Correspondence to Çağdaş Gönen.

Ethics declarations

Conflict of interest

There is no conflict of interest for this study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gönen, Ç. Enhancing Bioconversion Potential of Duckweed by Acid and Hydrogen Peroxide Pretreatment Methods to Improve Biofuel Productivity. Sugar Tech 20, 474–481 (2018). https://doi.org/10.1007/s12355-017-0558-y

Download citation


  • Biomass
  • Pretreatment
  • Biofuel
  • Duckweed
  • Renewable energy
  • Climate change