Advertisement

Sugar Tech

, Volume 20, Issue 4, pp 474–481 | Cite as

Enhancing Bioconversion Potential of Duckweed by Acid and Hydrogen Peroxide Pretreatment Methods to Improve Biofuel Productivity

  • Çağdaş GönenEmail author
Research Article

Abstract

One of the main triggers of the climate change is the consumption of fossil derivative fuel to satisfy the energy need, and also it is clearly known that the future of the fossil fuel supply is limited. That is why, finding and using alternative, sustainable, renewable, and eco-friendly energy sources are inevitable to fight climate change and to reduce the global warming. Biomass is a well-known renewable material for energy production and is called as biofuels. There are some limitations to utilize the biomass effectively, because of the structure of their molecular forms. For this very reason, the pretreatment pathways to increase the biomass sugar concentration potential to increase the bioconversion potential are attempted in this study. Two different pretreatment methods, i.e., hydrogen peroxide and acid, were applied to biomass, which in this case is duckweed, taken from artificial pond at Niğde, Turkey. In order to determine important factors of the processes, Plackett–Burman design was used. Chemicals dosages, timing, temperature, solid ratio, and mesh size are identified using this methodology to obtain the interested results. Box–Behnken statistical design method was applied to make the optimization of the factors chosen from the factorial design. Consequently, Box–Behnken test indicated that acid pretreatment method showed slightly better results than the hydrogen peroxide application per total sugar concentration, which are 0.60 and 0.48 g/L, respectively.

Keywords

Biomass Pretreatment Biofuel Duckweed Renewable energy Climate change 

Notes

Acknowledgements

This project was supported by Department of Scientific Research Project of Ömer Halisdemir University, under Grant No. BAP-FEB2015-43-BAGEP 487.

Compliance with Ethical Standards

Conflict of interest

There is no conflict of interest for this study.

References

  1. Antonopoulou, G., D. Vayenas, and G. Lyberatos. 2016. Ethanol and hydrogen production from sunflower straw: The effect of pretreatment on the whole slurry fermentation. Biochemical Engineering Journal 116: 65–74. doi: 10.1016/j.bej.2016.06.014.CrossRefGoogle Scholar
  2. Candido, R.G., G.G. Godoy, and A.R. Gonçalve. 2012. Study of sugarcane bagasse pretreatment with sulfuric acid as a step of cellulose obtaining. International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering 810: 101–105.Google Scholar
  3. Candido, R.G., G.G. Godoy, and A. Gonçalves. 2017. Characterization and application of cellulose acetate synthesized from sugarcane bagasse. Carbohydrate Polymers. doi: 10.1016/j.carbpol.2017.03.057.PubMedGoogle Scholar
  4. Dubois, M., K.A. Gilles, J.K. Hamilton, P.A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28: 350–356. doi: 10.1021/ac60111a017.CrossRefGoogle Scholar
  5. Flach, Bob, Sabine Lieberz, Marcela Rondon, Barry Williams, and Carrie Teiken. 2015. EU Biofuels Annual 2015. Global Agricultural Information Network. doi:NL5028.Google Scholar
  6. Guan, G., Z. Zhang, H. Ding, M. Li, D. Shi, M. Zhu, and L. Xia. 2015. Enhanced degradation of lignin in corn stalk by combined method of Aspergillus oryzae solid state fermentation and H2O2 treatment. Biomass and Bioenergy 81: 224–233. doi: 10.1016/j.biombioe.2015.07.008.CrossRefGoogle Scholar
  7. Gündoğdu, Keskin, İrem Deniz Tuğba, Gülizar Çalışkan, Erdem Sefa Şahin, and Nuri Azbar. 2016. Experimental design methods for bioengineering applications. Critical Reviews in Biotechnology 36: 368–388. doi: 10.3109/07388551.2014.973014.CrossRefGoogle Scholar
  8. Gungormusler, M., C. Gonen, G. Ozdemir, and N. Azbar. 2010. Fermentation medium optimization for 1,3-propanediol production using Taguchi and Box–Behnken experimental designs. Fresenius Environmental Bulletin 19: 2840–2847.Google Scholar
  9. Güven, Güray, Altunay Perendeci, and Abdurrahman Tanyolaç. 2008. Electrochemical treatment of deproteinated whey wastewater and optimization of treatment conditions with response surface methodology. Journal of Hazardous Materials 157: 69–78. doi: 10.1016/j.jhazmat.2007.12.082.CrossRefPubMedGoogle Scholar
  10. Hivechi, Ahmad, and S. Hajir Bahrami. 2016. A new cellulose purification approach for higher degree of polymerization: Modeling, optimization and characterization. Carbohydrate Polymers 152: 280–286. doi: 10.1016/j.carbpol.2016.07.001.CrossRefPubMedGoogle Scholar
  11. Höhne, N., T. Kuramochi, C. Warnecke, F. Röser, H. Fekete, M. Hagemann, T. Day. 2017. The Paris Agreement: Resolving the inconsistency between global goals and national contributions. Climate Policy 17: 16–32. doi: 10.1080/14693062.2016.1218320.CrossRefGoogle Scholar
  12. Imamoglu, Esra, and Fazilet Vardar Sukan. 2014. The effects of single and combined cellulosic agrowaste substrates on bioethanol production. Fuel 134: 477–484. doi: 10.1016/j.fuel.2014.05.087.CrossRefGoogle Scholar
  13. Izmirlioglu, Gulten, and Ali Demirci. 2016. Ethanol production in biofilm reactors from potato waste hydrolysate and optimization of growth parameters for Saccharomyces cerevisiae. Fuel 181: 643–651. doi: 10.1016/j.fuel.2016.05.047.CrossRefGoogle Scholar
  14. Joo, J., S.J. Lee, H.Y. Yoo, Y. Kim, M. Jang, J. Lee, S.O. Han, S.W. Kim, and C. Park. 2016. Improved fermentation of lignocellulosic hydrolysates to 2,3-butanediol through investigation of effects of inhibitory compounds by Enterobacter aerogenes. Chemical Engineering Journal 306: 916–924. doi: 10.1016/j.cej.2016.07.113.CrossRefGoogle Scholar
  15. Katsimpouras, Constantinos, Paul Christakopoulos, and Evangelos Topakas. 2016. Acetic acid-catalyzed hydrothermal pretreatment of corn stover for the production of bioethanol at high-solids content. Bioprocess and Biosystems Engineering 39: 1415–1423. doi: 10.1007/s00449-016-1618-5.CrossRefPubMedGoogle Scholar
  16. Katukuri, N.R., S. Fu, S. He, X. Xu, X. Yuan, Z. Yang, and R.-B. Guo. 2017. Enhanced methane production of Miscanthus floridulus by hydrogen peroxide pretreatment. Fuel 199: 526–566. doi: 10.1016/j.fuel.2017.03.014.CrossRefGoogle Scholar
  17. Li, K., J. Qin, C. Liu, and F. Bai. 2016. Optimization of pretreatment, enzymatic hydrolysis and fermentation for more efficient ethanol production by Jerusalem artichoke stalk. Bioresource Technology 221: 188–194. doi: 10.1016/j.biortech.2016.09.021.CrossRefPubMedGoogle Scholar
  18. Liu, Junying, Yunmeng Song, Yuhuan Liu, and Roger Ruan. 2015. Optimization of growth conditions toward two-stage cultivation for lipid production of chlorella vulgaris. Environmental Progress and Sustainable Energy 34: 1801–1807. doi: 10.1002/ep.12162.CrossRefGoogle Scholar
  19. Martínez-Patiño, J.C., E. Ruiz, I. Romero, C. Cara, J.C. López-Linares, and E. Castro. 2017. Combined acid/alkaline–peroxide pretreatment of olive tree biomass for bioethanol production. Bioresource Technology 239: 326–335. doi: 10.1016/j.biortech.2017.04.102.CrossRefPubMedGoogle Scholar
  20. Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31: 426–428. doi: 10.1021/ac60147a030.CrossRefGoogle Scholar
  21. Nikolaidis, P., and A. Poullikkas. 2017. A comparative overview of hydrogen production processes. Renewable and Sustainable Energy Reviews 67: 597–611. doi: 10.1016/j.rser.2016.09.044.CrossRefGoogle Scholar
  22. Partida-Sedas, G., N. Montes-García, O. Carvajal-Zarrabal, L. López-Zamora, J. Gómez-Rodríguez, and M.G. Aguilar-Uscanga. 2017. Optimization of hydrolysis process to obtain fermentable sugars from sweet sorghum bagasse using a Box–Behnken design. Sugar Tech 19: 317–325. doi: 10.1007/s12355-016-0461-y.CrossRefGoogle Scholar
  23. Román-Figueroa, C., N. Montenegro, and M. Paneque. 2017. Bioenergy potential from crop residue biomass in Araucania Region of Chile. Renewable Energy 102: 170–177. doi: 10.1016/j.renene.2016.10.013.CrossRefGoogle Scholar
  24. Sasikumar, Ezhumalai, and Thangavelu Viruthagiri. 2008. Optimization of process conditions using response surface methodology (RSM) for ethanol production from pretreated sugarcane bagasse: Kinetics and modeling. BioEnergy Research 1: 239–247. doi: 10.1007/s12155-008-9018-6.CrossRefGoogle Scholar
  25. Soda, Satoshi, Takeshi Ohchi, Jusakulvijit Piradee, Yuichiro Takai, and Michihiko Ike. 2015. Duckweed biomass as a renewable biorefinery feedstock: Ethanol and succinate production from Wolffia globosa. Biomass and Bioenergy 81: 364–368. doi: 10.1016/j.biombioe.2015.07.020.CrossRefGoogle Scholar
  26. Yasar, Abdullah, Rizwan Rasheed, Amtul Bari Tabinda, Aleena Tahir, and Friha Sarwar. 2017. Life cycle assessment of a medium commercial scale biogas plant and nutritional assessment of effluent slurry. Renewable and Sustainable Energy Reviews 67: 364–371. doi: 10.1016/j.rser.2016.09.026.CrossRefGoogle Scholar
  27. Yucel, Y., C. Demir, N. Dizge, and B. Keskinler. 2014. Methods for lipase immobilization and their use for biodiesel production from vegetable oil. Energy Sources Part A—Recovery Utilization and Environmental Effects 36: 1203–1211. doi: 10.1080/15567036.2010.545805.CrossRefGoogle Scholar
  28. Zhao, X., G.K. Moates, A. Elliston, D.R. Wilson, M.J. Coleman, and K.W. Waldron. 2015. Simultaneous saccharification and fermentation of steam exploded duckweed: Improvement of the ethanol yield by increasing yeast titre. Bioresource Technology 194: 263–269. doi: 10.1016/j.biortech.2015.06.131.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Society for Sugar Research & Promotion 2017

Authors and Affiliations

  1. 1.Engineering Faculty, Department of Environmental EngineeringNiğde Ömer Halisdemir UniversityNigdeTurkey

Personalised recommendations