Skip to main content

Advertisement

Log in

Effect of Plant Density on Sweet and Biomass Sorghum Production on Semiarid Marginal Land

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Plant density substantially affects sorghum (Sorghum bicolor (L.) Moench) productivity. Therefore, density optimisation plays a pivotal role in crop management practices. A 2-year field experiment was conducted on sandy loam marginal land in Ordos, Inner Mongolia, China, to (1) determine the mechanism underlying the impact of plant density (i.e. 6.0, 7.5, 9.0, 10.5 and 12.0 plant m−2) on biomass yield, quality and photosynthetic efficiency and (2) determine the optimum plant density for sweet sorghum variety GT-3 and biomass sorghum variety GN-4. Results indicate that plant height, leaf area index (LAI), leaf area duration (LAD) and biomass yield increased as plant density increased, but tiller number, stem diameter and net assimilation rate (NAR) decreased. The growth period between elongation and anthesis dates was crucial to sorghum productivity; during this period, LAD was the determining factor for biomass yield. Increase in plant density up to 10.5 plant m−2 led to a high LAI level, an extended LAD, a high and stable NAR and a positive balance between photosynthesis and respiration processes, all of which contributed to highest biomass yield (13.2 t ha−1). Ultimately, sweet-type variety GT-3 demonstrated the highest theoretical ethanol yield (4147 L ha−1) and relative feed value (112.3%) compared with biomass-type variety GN-4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ameen, A., X.L. Yang, F. Chen, C.C. Tang, F. Du, S. Fahad, and G.H. Xie. 2017. Biomass yield and nutrient uptake of energy sorghum in response to nitrogen fertilizer rate on marginal land in a semi-arid region. Bioenergy Research 10: 363–376.

    Article  CAS  Google Scholar 

  • Berenguer, M.J., and J.M. Faci. 2001. Sorghum (Sorghum bicolor L. Moench) yield compensation processes under different plant densities and variable water Supply. European Journal of Agronomy 15: 43–55.

    Article  Google Scholar 

  • Caravetta, G.J., J.H. Cherney, and K.D. Johnson. 1990. Within-row spacing influences on diverse sorghum genotypes. II. Dry matter yield and forage quality. Agronomy Journal 82: 210–215.

    Article  Google Scholar 

  • Carmi, A., Y. Aharoni, M. Edelstein, N. Umiel, A. Hagiladi, E. Yosef, M. Nikbachat, A. Zenou, and J. Miron. 2006. Effects of irrigation and plant density on yield, composition and in vitro digestibility of a new forage sorghum variety, Tal, at two maturity stages. Animal Feed Science and Technology 131: 120–132.

    Article  Google Scholar 

  • Ciampitti, I.A., and T.J. Vyn. 2011. A comprehensive study of plant density consequences on nitrogen uptake dynamics of maize plants from vegetative to reproductive stages. Field Crops Research 121: 2–18.

    Article  Google Scholar 

  • Cipollini, D.F., and J. Bergelson. 2001. Plant density and nutrient availability constrain constitutive and wound-induced expression of trypsin inhibitors in Brassica napus. Journal of Chemical Ecology 27: 593–610.

    Article  CAS  PubMed  Google Scholar 

  • Cusicanqui, J.A., and J.G. Lauer. 1999. Plant density and hybrid influence on corn forage yield and quality. Agronomy Journal 91: 911–915.

    Article  Google Scholar 

  • Dai, J.L., W.J. Li, W. Tang, D.M. Zhang, Z.H. Li, H.Q. Lu, A.E. Eneji, and H.Z. Dong. 2015. Manipulation of dry matter accumulation and partitioning with plant density in relation to yield stability of cotton under intensive management. Field Crops Research 180: 207–215.

    Article  Google Scholar 

  • Dolciotti, I., S. Mambelli, S. Grandi, and G. Venturi. 1998. Comparison of two sorghum genotypes for sugar and fiber production. Industrial Crops and Products 7: 265–272.

    Article  Google Scholar 

  • Dong, H.Z., W.J. Li, A.E. Eneji, and D.M. Zhang. 2012. Nitrogen rate and plan density effects on yield and late-season leaf senescence of cotton raised on a saline field. Field Crops Research 126: 137–144.

    Article  Google Scholar 

  • Evans, G.C. 1972. The quantitative analysis of plant growth, 734. Oxford: Blackwell.

    Google Scholar 

  • Ferreira, G., M. Alfonso, S. Depino, and E. Alessandri. 2014. Effect of planting density on nutritional quality of green-chopped corn for silage. Journal of Dairy Science 97: 5918–5921.

    Article  CAS  PubMed  Google Scholar 

  • Fu, H.M., F.Y. Meng, R.L. Molatudi, and B.G. Zhang. 2016. Sorghum and switchgrass as biofuel feedstocks on marginal lands in northern China. Bioenergy Research 9: 633–642.

    Article  CAS  Google Scholar 

  • Hiltbrunner, J., B. Streit, and M. Liedgens. 2007. Are seeding densities an opportunity to increase grain yield of winter wheat in a living mulch of white clover? Field Crops Research 102: 163–171.

    Article  Google Scholar 

  • Huang, M., C.L. Yang, Q.M. Ji, L.G. Jiang, J.L. Tan, and Y.Q. Li. 2013. Tillering responses of rice to plant density and nitrogen rate in a subtropical environment of southern China. Field Crops Research 149: 187–192.

    Article  Google Scholar 

  • Jahanzad, E., M. Jorat, H. Moghadam, A. Sadeghpour, M.R. Chaichi, and M. Dashtaki. 2013. Response of a new and a commonly grown forage sorghum cultivar to limited irrigation and planting density. Agricultural Water Management 117: 62–69.

    Article  Google Scholar 

  • Justes, E., P. Denoroy, B. Gabrielle, and G. Gosse. 2000. Effect of crop nitrogen status and temperature on the radiation use efficiency of winter oilseed rape. European Journal of Agronomy 13: 165–177.

    Article  Google Scholar 

  • Kamara, S.I., and I.J. Jackson. 1997. A new soil-moisture based classification of rain days and dry days and its application to Sierra Leone. Theoretical and Applied Climatology 56: 199–213.

    Article  Google Scholar 

  • Kvet, J., J.P. Ondok, J. Necas, and P.G. Jarvis. 1971. Methods of growth analysis. In Plant photosynthetic production manual of methods, ed. Z. Šesták and J. Čatský, 343–391. The Haque: Dr. W. Junk N.V. Publishers.

    Google Scholar 

  • Leskovsek, R., A. Datta, A. Simoncic, and S.Z. Knezevic. 2012. Influence of nitrogen and plant density on the growth and seed production of common ragweed (Ambrosia artemisiifolia L.). Journal of Pest Science 85: 527–539.

    Article  Google Scholar 

  • Li, M., J. Wang, Y. Yang, and G.H. Xie. 2016. Alkali-based pretreatments distinctively extract lignin and pectin for enhancing biomass saccharification by altering cellulose features in sugar-rich Jerusalem artichoke stem. Bioresource Technology 208: 31–41.

    Article  CAS  PubMed  Google Scholar 

  • Liu, R.H., J.X. Li, and F. Shen. 2008. Refining bioethanol from stalk juice of sweet sorghum by immobilized yeast fermentation. Renewable Energy 33: 1130–1135.

    Article  CAS  Google Scholar 

  • Nyakudya, I.W., and L. Stroosnijder. 2014. Effect of rooting depth, plant density and planting date on maize (Zea mays L.) yield and water use efficiency in semi-arid Zimbabwe: Modelling with AquaCrop. Agricultural Water Management 146: 280–296.

    Article  Google Scholar 

  • Ren, Y.Y., J.J. Liu, Z.L. Wang, and S.Q. Zhang. 2016. Planting density and sowing proportions of maize–soybean intercrops affected competitive interactions and water-use efficiencies on the Loess Plateau, China. European Journal of Agronomy 72: 70–79.

    Article  Google Scholar 

  • Rooney, W.L., J. Blumenthal, B. Bean, and J.E. Mullet. 2007. Designing sorghum as a dedicated bioenergy feedstock. Biofuels, Bioproducts and Biorefining 1: 147–157.

    Article  CAS  Google Scholar 

  • Sakellariou-Makrantonaki, M., D. Papalexis, N. Nakos, and I.K. Kalavrouziotis. 2007. Effect of modern irrigation methods on growth and energy production of sweet sorghum (var. Keller) on a dry year in Central Greece. Agricultural Water Management 90: 181–189.

    Article  Google Scholar 

  • Singh, M.P., J.E. Erickson, L.E. Sollenberger, K.R. Woodard, J.M.B. Vendramini, and J.R. Fedenko. 2012. Mineral composition and biomass partitioning of sweet sorghum grown for bioenergy in the southeastern USA. Biomass and Bioenergy 47: 1–8.

    Article  Google Scholar 

  • Teetor, V.H., D.V. Duclos, E.T. Wittenberg, K.M. Young, J. Chawhuaymak, M.R. Riley, and D.T. Ray. 2011. Effects of planting date on sugar and ethanol yield of sweet sorghum grown in Arizona. Industrial Crops and Products 34: 1293–1300.

    Article  CAS  Google Scholar 

  • Van Soest, P.J., J.B. Robertson, and B.A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74: 3583–3597.

    Article  CAS  PubMed  Google Scholar 

  • Vasilakoglou, I., K. Dhima, N. Karagiannidis, and T. Gatsis. 2011. Sweet sorghum productivity for biofuels under increased soil salinity and reduced irrigation. Field Crops Research 120: 38–46.

    Article  Google Scholar 

  • Wang, R., T. Cheng, and L.Y. Hu. 2015. Effect of wide–narrow row arrangement and plant density on yield and radiation use efficiency of mechanized direct-seeded canola in Central China. Field Crops Research 172: 42–52.

    Article  Google Scholar 

  • Wortmann, C.S., A.J. Liska, R.B. Ferguson, D.J. Lyon, R.N. Klein, and I. Dweikat. 2010. Dryland performance of sweet sorghum and grain crops for biofuel in Nebraska. Agronomy Journal 102: 319–326.

    Article  CAS  Google Scholar 

  • Yang, H.S., A. Dobermann, J.L. Lindquist, D.T. Walters, T.J. Arkebauer, and K.G. Cassman. 2004. Hybrid-maize—A maize simulation model that combines two crop modeling approaches. Field Crops Research 87: 131–154.

    Article  Google Scholar 

  • Yang, N., Y.C. Ding, X.Y. Jiao, J.S. Wang, E.W. Dong, L.G. Wang, and P. Wu. 2013. Effects of plant density on population physiological indices, grain yield and yield component factors of sorghum. Journal of Agriculture 3: 11–17.

    CAS  Google Scholar 

  • Yang, G.Z., X.J. Luo, Y.C. Nie, and X.L. Zhang. 2014. Effects of plant density on yield and canopy micro environment in hybrid cotton. Journal of Integrative Agriculture 13: 2154–2163.

    Article  Google Scholar 

  • Yao, H.S., Y.L. Zhang, X.P. Yi, Y.Y. Hu, H.H. Luo, L. Gou, and W.F. Zhang. 2015. Plant density alters nitrogen partitioning among photosynthetic components, leaf photosynthetic capacity and photosynthetic nitrogen use efficiency in field-grown cotton. Field Crops Research 184: 39–49.

    Article  Google Scholar 

  • Yu, J.L., X. Zhang, and T.W. Tan. 2008. Ethanol production by solid state fermentation of sweet sorghum using thermotolerant yeast strain. Fuel Processing Technology 89: 1056–1059.

    Article  CAS  Google Scholar 

  • Yusuf, R.I., J.C. Siemens, and D.G. Bullock. 1999. Growth analysis of soybean under no-tillage and conventional tillage systems. Agronomy Journal 91: 928–933.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of Inner Mongolia Tehong Biological Co., Ltd., for sorghum planting and management.

Funding

This work was supported by the National Natural Science Foundation of China (31470555).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Hui Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, C., Sun, C., Du, F. et al. Effect of Plant Density on Sweet and Biomass Sorghum Production on Semiarid Marginal Land. Sugar Tech 20, 312–322 (2018). https://doi.org/10.1007/s12355-017-0553-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-017-0553-3

Keywords

Navigation