Skip to main content
Log in

Genome Characterization of In Vitro Induced Amphiploids of an Intergeneric Hybrid Erianthus arundinaceus × Saccharum spontaneum

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Erianthus arundinaceus, a wild relative of sugarcane, has great potential as a germplasm source to contribute valuable traits to sugarcane including better ratoonability, vigour and adaptation to biotic and abiotic stresses. Many unsuccessful attempts have been made to introduce the desirable characters from this wild species to modern sugarcane cultivars. In most of these cases, it was constrained by lack of fertility. A rare hybrid between E. arundinaceus (IK 76–78, 2n = 60) × Saccharum spontaneum (Iritty-2, 2n = 64) has been developed as an intermediate hybrid to transfer the characters from E. arundinaceus to sugarcane cultivars. This hybrid, CYM 04-420, with somatic chromosome number 2n = 62 was subjected to in vitro colchicine treatment, and amphiploids were developed with 2n = 124. We report here for the first time the chromosome composition and chromosome pairing behaviour of S. spontaneum × E. arundinaceus intergeneric amphiploid via genomic in situ hybridization. The implications of the results from this study for introgression of genes from E. arundinaceus in sugarcane breeding programmes are discussed in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alix, K., F.C. Baurens, F. Paulet, J.C. Glaszmann, and A. D’Hont. 1998. Isolation and characterization of a satellite DNA family in the Saccharum complex. Genome 41: 854–864.

    Article  CAS  PubMed  Google Scholar 

  • Allum, J.F., D.H. Bringloe, and A.V. Roberts. 2007. Chromosome doubling in a Rosa rugosa Thunb. hybrid by exposure of in vitro nodes to oryzalin: The effects of node length, oryzalin concentration and exposure time. Plant Cell Reports 26: 1977–1984.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y.H., C.C. Lo, and C. Chen. 1992. Colchicine-induced amphidiploids from cell cultures of Saccharum × Miscanthus hybrids. Reports of Taiwan Sugar Research Institute 136: 1–9.

    CAS  Google Scholar 

  • Cohen, D., and J.L. Yao. 1996. In vitro chromosome doubling of nine Zantedeschia cultivars. Plant Cell, Tissue and Organ Culture 47: 43–49.

    Article  Google Scholar 

  • D’Hont, A., P.S. Rao, P. Feldmann, N. Berding, and J.C. Glaszmann. 1995. Identification and characterization of sugarcane intergeneric hybrids, Saccharum officinarum and Erianthus arundinaceus, with molecular markers and DNA in situ hybridization. Theoretical and Applied Genetics 91: 320–326.

    PubMed  Google Scholar 

  • Daniels, J., and B.T. Roach. 1987. Taxonomy and evolution. In Sugarcane improvement through breeding, ed. D.J. Heinz, 7–84. Amsterdam: Elsevier Press.

    Chapter  Google Scholar 

  • Daniels, J., P. Smith, N. Paton, and C.A. Williams. 1975. The origin of the genus Saccharum. Sugarcane Breeder’s Newsletter 36: 24–39.

    Google Scholar 

  • Dhooghe, E., K. Van, T. Laere, L.Leus Eeckhaut, and J. Van Huylenbroeck. 2011. Mitotic chromosome doubling of plant tissues in vitro. Plant Cell, Tissue and Organ Culture 104: 359–373.

    Article  Google Scholar 

  • Doyle, J.J., and Doyle. J.L. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13–15.

    Google Scholar 

  • Gill, B.S. 1991. Nucleocytoplasmic interaction (NCI) hypothesis of genome evolution and speciation in polyploid plants. In Proceedings of the Kihara memorial international symposium on cytoplasmic engineering in wheat, ed. T. Sasakurma, 48–53. Yokohama.

  • Heinz, D.J., and G.W.P. Mee. 1970. Colchicine induced polyploids from suspension cultures of sugarcane. Crop Science 10: 696–699.

    Article  Google Scholar 

  • Huang, Y., J. Wu, P. Wang, Y. Lin, C. Fu, Z. Deng, Q. Wang, Q. Li, R. Chen, and M. Zhang. 2015. Characterization of chromosome inheritance of the intergeneric BC2 and BC3 progeny between Saccharum spp. and E. arundinaceus. PLoS One 10: e0133722.

    Article  PubMed  PubMed Central  Google Scholar 

  • Janaki Ammal, E.K. 1941. Intergeneric hybrids of Saccharum. Journal of Genetics 41: 217–253.

    Article  Google Scholar 

  • Janaki Ammal, E.K., and T.S.N. Singh. 1936. A preliminary note on a new SaccharumSorghum hybrid. Indian Journal of Agricultural Science 6: 1105–1106.

    Google Scholar 

  • Janaki Ammal, E.K. 1938. Chromosome behaviour in S. spontaneum × Sorghum durra hybrids. In Indian science congress association proceedings Part 3, Abstract 143.

  • Li, H.W., C.S. Loh, and C.L. Lee. 1948. Hybrids between Saccharum officinarum, Miscanthus japonicus and S. spontaneum. Botanical Bulletin of Academy of Since (Taipei) 2: 147–160.

    Google Scholar 

  • Liu, B., and J.F. Wendel. 2002. Non-Mendelian phenomena in allopolyploid genome evolution. Current Genomics 3: 1–17.

    Article  Google Scholar 

  • Mandal, A., and A.K. Datta. 2011. Secondary chromosome associations and cytomixis in Corchorus spp. Cytologia 76(3): 337–343.

    Article  Google Scholar 

  • Mukherjee, S.K. 1957. Origin and distribution of Saccharum. Botany Gazette 119: 55–61.

    Article  Google Scholar 

  • Murashige, T., and R. Nakano. 1966. Tissue culture as a potential tool in obtaining polyploid plants. Journal of Heredity 57: 114–118.

    Article  Google Scholar 

  • Murashige, T., and F. Skoog. 1962. Revised medium for growth and bioassay with tobacco tissue cultures. Phisiology of Plants 15: 473–497.

    Article  CAS  Google Scholar 

  • Nagai, C., B.S. Ahloowalia, D.J. Heinz, and T.L. Tew. 1986. Colchicine induced aneuploids from cell cultures of sugarcane. Euphytica 35: 1029–1038.

    Article  Google Scholar 

  • Nair, N.V. 1999. Production and cytomorphological analysis of intergeneric hybrids of Sorghum × Saccharum. Euphytica 108: 187–191.

    Article  Google Scholar 

  • Nair, N.V., S. Nair, T.V. Sreenivasan, and M. Mohan. 1999. Analysis of genetic diversity and phylogeny in Saccharum and related genera using RAPD markers. Genetic Resources and Crop Evolution 46: 76–79.

    Article  Google Scholar 

  • Ostergren, G., and K.W. Haneen. 1962. A squash technique for chromosome morphological studies. Heredity 48: 332–341.

    Article  Google Scholar 

  • Piperidis, G., M.J. Christopher, B.J. Carroll, N. Berding, and A. D’Hont. 2000. Molecular contribution to selection of intergeneric hybrids between sugarcane and the wild species Erianthus arundinaceus. Genome 43: 1033–1037.

    Article  CAS  PubMed  Google Scholar 

  • Piperidis, N., J. Chen, H. Deng, L. Wang, P. Jackson, and G. Piperidis. 2010. GISH characterization of Erianthus arundinaceus chromosomes in three generations of sugarcane intergeneric hybrids. Genome 53: 331–336.

    Article  CAS  PubMed  Google Scholar 

  • Premachandran, M.N., S. Arvinth, and R. Lalitha. 2006. Chloroplast DNA polymorphism in psbC-trnS and trnL intron segments differentiate Saccharum and Erianthus. Indian Journal of Genetics and Plant Breeding 66(4): 283–286.

    CAS  Google Scholar 

  • Premachandran, M.N., P.T. Prathima, and Maya Lekshmi. 2011a. Polyploidy in sugarcane—A review. Journal of Sugarcane Research 1(2): 1–15.

    Google Scholar 

  • Premachandran, M.N., V. Raffee Viola, R. Lalitha, M. Lekshmi, and A.K. Remadevi. 2011b. Saccharum spontaneum as a bridge species for introgression of Erianthus arundinaceus and E. bengalense traits to sugarcane. In Balancing sugar and energy production in developing countries: Sustainable technologies and marketing technologies. Proceedings of international sugar conference IS 2011. New Delhi, 521–526.

  • Roach, B.T. 1989. A programme for sugarcane improvement from genetic diversity: Background and preliminary results. Proceedings of International Society of Sugarcane Technology 20: 900–909.

    Google Scholar 

  • Tal, M. 1980. Physiology of polyploids. In Polyploidy: Biological relevance, vol. 13, ed. W.H. Lewis, 61–76. New York: Plenum Press.

    Chapter  Google Scholar 

  • Thomas, R., and T.S. Venkataraman. 1930. Sugarcane—Sorghum hybrids. Agricultural Journal of India 25: 164.

    Google Scholar 

  • Wu, J., Y. Huang, Y. Lin, C. Fu, S. Liu, Z. Deng, Q. Li, Z. Huang, R. Chen, and R. Zhang. 2014. Unexpected inheritance pattern of Erianthus arundinaceus chromosomes in the intergeneric progeny between Saccharum spp. and Erianthus arundinaceus. PLoS One 9: e110390.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiong, Y.C., F.M. Li, and T. Zhang. 2006. Performance of wheat crops with different chromosome ploidy: Root-sourced signals, drought tolerance, and yield performance. Planta 224: 710–718.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by ICAR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Sobhakumari.

Ethics declarations

Conflict of interest

We, the authors, declare that we have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Premachandran, M.N., Sobhakumari, V.P., Lekshmi, M. et al. Genome Characterization of In Vitro Induced Amphiploids of an Intergeneric Hybrid Erianthus arundinaceus × Saccharum spontaneum . Sugar Tech 19, 386–393 (2017). https://doi.org/10.1007/s12355-016-0482-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-016-0482-6

Keywords

Navigation