Skip to main content

Advertisement

Log in

Fertigated Sugarcane Yield and Carbon Isotope Discrimination (Δ13C) Related to Nitrogen Nutrition

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the response of sugarcane to nitrogen (N) application with drip irrigation and the relation with carbon isotope discrimination (Δ13C), aboveground dry matter cane yield and the N balance in consecutive ratoon crops of sugarcane. An experiment was set up in Jaú, SP, Brazil, in which the second and third ratoon crop cycles (2008/2009 and 2009/2010) were evaluated. The experiment included an unfertilized N control in both years (T1), and the following three nitrogen (N) fertilizer rates (in kg ha−1) applied in 2008 and 2009, respectively: 70 and 50 (T2), 140 and 100 (T3), and 210 and 150 (T4). Fertilization with N caused a marked gain in stalk yields by 98 Mg ha−1 in 2 years. The N export with harvest was higher than N application in the control treatment T1 and at the lower rate (T2); this, in addition to the observed linear response to N, indicate the need to increase N fertilization in irrigated sugarcane. The values of Δ13C decreased with the increase of N supply showing a significant negative correlation (p < 0.05) with stalk as well as whole plant aboveground dry matter yields. The values of Δ13C in top leaves may be used as a tool to characterize the N status of sugarcane plants and its relation to aboveground dry matter and yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • AQUASTAT (FAO’s Information System on Water and Agriculture). 2014. Brazil: Geography and population. Available from: http://www.fao.org/nr/water/aquastat/countries_regions/bra/index.stm. Accessed 05 May 2014.

  • Arruda, P. 2012. Genetically modified sugarcane for bioenergy generation. Current Opinion Biotechnology 23: 315–322. doi:10.1016/j.copbio.2011.10.012.

    Article  CAS  Google Scholar 

  • Barrie, A., and S.J. Prosser. 1996. Automated analysis of light-element stable isotopes by isotope ratio mass spectrometry. In Mass spectrometry of soils, ed. T.W. Boutton, and S. Yamasaki, 1–46. New York: Marcel Dekker.

    Google Scholar 

  • Bell, M.J., and A.L. Garside. 2014. Growth and yield responses to amending the sugarcane monoculture: interactions between break history and nitrogen fertilizer. Crop & Pasture Science 60: 287–299. doi:10.1071/CP13340.

    Article  Google Scholar 

  • Cernusak, L.A., N. Ubierna, K. Winter, J.A.M. Holtum, J.D. Marshall, and G.D. Farquhar. 2013. Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. New Phytologist 200: 950–965. doi:10.1111/nph.12423.

    Article  CAS  PubMed  Google Scholar 

  • Carnaúba, B.A.A. 1990. O nitrogênio e a cana-de-açúcar. STAB-Açúcar, Álcool e Subprodutos 8: 4–41.

    Google Scholar 

  • Chapola, R.G., H.P. Hoffmann, A.I. Bassinello, A.R. Fernandes Jr, and M.A.S. Vieira. 2011. Censo varietal 2010 de cana-de-açúcar nos estados de São Paulo e Mato Grosso do sul. STAB-Açúcar, e Álcool e Subprodutos 29: 42–45.

    Google Scholar 

  • Clay, D.E., S.A. Clay, Z. Liu, and C. Reese. 2001. Spatial variability of C-13 isotopic discrimination in corn (Zea mays). Communications Agronomy Journal 32: 1813–1827. doi:10.2134/agronj2005.0066.

    CAS  Google Scholar 

  • Dalri, A.B., and R.L. Cruz. 2008. Produtividade da cana-de-açúcar fertirrigada com N e K via gotejamento subsuperficial. Engenharia Agrícola 28: 516–524. doi:10.1590/S0100-69162008000300012.

    Article  Google Scholar 

  • Dourado Neto, D., D.S. Powlson, R.A. Bakar, O.O.S. Bacchi, M.V. Basanta, P.T. Cong, G. Keerthisinghe, M. Ismaili, S.M. Rahman, K. Reichardt, M.S.A. Safwat, R. Sangakkara, L.C. Timm, and J.Y. Wang. 2010. Multiseason recoveries of organic and inorganic nitrogen-15 in tropical cropping systems. Soil Science Society of America Journal 74: 139–152. doi:10.2136/sssaj2009.0192.

    Article  CAS  Google Scholar 

  • EMBRAPA. 2006. CNPS—Centro Nacional de Pesquisa de Solos—Manual de métodos de análises de solo, 2nd ed. Rio de Janeiro, RJ: Embrapa.

    Google Scholar 

  • EMBRAPA. 2013. CNPS—Centro Nacional de Pesquisa de Solos. Sistema brasileiro de classificação de solos. Rio de Janeiro, RJ: Embrapa.

    Google Scholar 

  • Epstein, E., and A.J. Bloom. 2004. Mineral nutrition of plants: Principles and perspectives, 2nd ed. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Farquhar, G.D. 1983. On the nature of carbon isotope discrimination in C4 species. Australian Journal Plant Physiology 10: 205–226.

    Article  CAS  Google Scholar 

  • Fernandes, A.C. 2003. Calculated on the ethanol plant cane. 2nd ed. STAB. Açúcar, Álcool e Subprodutos. Piracicaba, SP.

  • Fortes, C., P.C.O. Trivelin, and A.C. Vitti. 2012. Long-term decomposition of sugarcane harvest residues in Sao Paulo state, Brazil. Biomass and Bioenergy 42: 189–198. doi:10.1016/j.biombioe.2012.03.011.

    Article  CAS  Google Scholar 

  • Franco, H.C.J., R. Otto, C.E. Faroni, A.C. Vitti, E.C.A. Oliveira, and P.C.O. Trivelin. 2011. Nitrogen in sugarcane derived from fertilizer under Brazilian field conditions. Field Crops Research 121: 29–41. doi:10.1016/j.fcr.2010.11.011.

    Article  Google Scholar 

  • Franco, H.C.J., P.C.O. Trivelin, C.E. Faroni, A.C. Vitti, and R. Otto. 2010. Stalk yield and technological attributes of planted cane as related to nitrogen fertilization. Scientia Agricola 67: 579–590. doi:10.1590/S0103-90162010000500012.

    Article  Google Scholar 

  • Gava, G.J.C., M.A. Silva, R.C. Silva, E.M. Jerônimo, C.S. Cruz, and O.T. Kölln. 2011. Produtividade de três cultivares de cana-de-açúcar sob manejos de sequeiro e irrigado por gotejamento. Revista Brasileira Engenharia Agrícola & Ambiental 15: 250–255. doi:10.1590/S1415-43662011000300005.

    Article  Google Scholar 

  • Gunda, P., and H. Youngs. 2013. Bioenergy and Water: Understanding Impacts. MIT Energy Initiative and Center for Strategic International Studies. Energy Water Land Nexus Workshop. (May 6–7), 1–46. Washington, D.C.

  • Henderson, S.A., S.V. Caemmerer, and G.D. Farquhar. 1992. Short- term measurements of carbon isotope discrimination in several C4 species. Australian Journal Plant Physiology 19: 263–285.

    Article  CAS  Google Scholar 

  • Howell, T.A., and S.R. Evett. 2004. The Penman-Monteith method, 14. Washington, DC: USDA-Agricultural Research Service, Conservation & Production Research Laboratory.

    Google Scholar 

  • Hubick, K.T., G.L. Hammer, G.D. Farquhar, L.J. Wade, S. Von Caemmerer, and S.A. Henderson. 1990. Carbon isotope discrimination varies genetically in C4 species. Journal Plant Physiology 91: 534–537. doi:10.1104/pp.92.2.534.

    Article  Google Scholar 

  • IBGE. 2006. Brazilian Institute of Geography and Statistics, 2006. Agricultural Census Survey. Available from http://www.ibge.gov.br/home/estatistica. Accessed 05 May 2014.

  • Korndörfer, G.H., M.R. Valle, M. Martins, and P.C.O. Trivelin. 1997. Utilization by planted cane of nitrogen from urea. Revista Brasileira de Ciência Solo 21: 23–26. doi:10.1590/S0100-06832008000700021.

    Google Scholar 

  • Malavolta, E., G.C. Vitti, and S.A. Oliveira. 1997. Avaliação do estado nutricional das plantas: princípios e aplicações, 3rd ed. Potafos: Piracicaba, SP.

    Google Scholar 

  • Meinzer, F.C., and J. Zhu. 1998. Nitrogen stress reduces the efficiency of the C4 CO2 concentrating system, and therefore quantum yield, in Saccharum (sugarcane) species. Journal Experimental Botany 49: 1227–1234. doi:10.1093/jxb/49.324.1227.

    CAS  Google Scholar 

  • Monneveux, P., M.S. Sheshshayee, J. Akthter, and J.M. Ribaut. 2007. Using carbon isotope discrimination to select maize (Zea mays L.) inbred lines and hybrids for drought tolerance. Plant Science 173: 390–396. doi:10.1016/j.plantsci.2007.06.003.

    Article  CAS  Google Scholar 

  • Muchow, R.C., M.J. Robertson, and A.W. Wood. 1996. Growth of sugarcane under high input conditions in tropical Australia. II. Sucrose accumulation and commercial yield. Field Crops Research 48: 26–37. doi:10.1016/0378-4290(96)00042-1.

    Article  Google Scholar 

  • Ng Kee Kwong, K.F., J.P. Paul, and J. Deville. 1999. Drip-fertigation—a means for reducing fertilizer nitrogen to sugarcane. Experimental Agriculture 35: 31–37.

    Article  Google Scholar 

  • Oliveira, E.C.A., G.J. de Castro Gava, P.C.O. Trivelin, R. Otto, and H.C.J. Franco. 2013. Determining a critical nitrogen dilution curve for sugarcane. Journal Plant Nutrition and Soil Science 176: 712–723. doi:10.1002/jpln.201200133.

    Google Scholar 

  • Pilbeam, C.J., and G.P. Warren. 1995. Use of 15 N for fertilizer N recovery an N mineralization studies in semiarid Kenya. Fertilizer Research 42: 123–128. doi:10.1007/BF00750506.

    Article  CAS  Google Scholar 

  • Van Raij, B., J.C. Andrade, H. Cantarella, and A.J. Quaggio (eds.). 2001. Análise química para avaliação da fertilidade de solos tropicais. Campinas, SP: IAC.

    Google Scholar 

  • Rossetto, R., F.L.F. Dias, M.G.A. Landell, H. Cantarella, S. Tavares, A.C. Vitti, and D. Perecin. 2010. N and K fertilization of sugarcane ratoons harvested without burning. Proceedings of the International Society of Sugar Cane Technologists 27: 1–8.

    Google Scholar 

  • Van Raij, B., and H. Cantarella. 1996. Outras culturas industriais. In Recomendações de adubação e calagem para o Estado de São Paulo, 2nd ed, ed. B. Van Raij, H. Cantarella, A.J. Quaggio, and A.M.C. Furlani, 8–13. Campinas, SP: IAC. (Boletim Técnico, 100).

    Google Scholar 

  • Saliendra, N.Z., F.C. Meinzer, M. Perry, and M. Thom. 1996. Associations between partitioning of carboxylase activity and bundle sheath leakiness to CO2, carbon isotope discrimination, photosynthesis, and growth in sugarcane. Journal Experimental Botany 47: 907–914. doi:10.1093/jxb/47.7.907.

    Article  CAS  Google Scholar 

  • Singh, P.N., and S.C. Mohan. 1994. Water use and yield response of sugarcane under different irrigation schedules and nitrogen levels in a subtropical region. Agricultural Water Management 26: 253–264. doi:10.1016/0378-3774(94)90012-4.

    Article  Google Scholar 

  • Soil Survey Staff. 2010. Keys to soil taxonomy, 11th ed. Washington, DC: USDA-Natural Resources Conservation Service.

    Google Scholar 

  • Stanley, C.D., R.E. Green, M.A. Khan, and L.T. Santo. 1990. Nitrogen fertilization rate on soil nitrate distribution for micro-irrigated sugarcane. Soil Science Society American Journal 54: 217–222.

    Article  Google Scholar 

  • Trivelin, P.C.O., H.C.J. Franco, R. Otto, D.A. Ferreira, A.C. Vitti, C. Fortes, C.E. Faroni, E.C.A. Oliveira, and H. Cantarella. 2013. Impact of sugarcane trash on fertilizer requirements for São Paulo, Brazil. Scientia Agricola 70: 345–352. doi:10.1590/S0103-90162013000500009.

    Article  CAS  Google Scholar 

  • UNEP (United Nations Environment Programme), 2011. The Bioenergy and Water Nexus, Oeko-Institut and IEA Bioenergy Task 43. Available from: www.unep.org/greeneconomy/Portals/88/documents/ger/Water_Bioenergy_FINAL_WEB_VERSION.pdf. Accessed 01 June 2013.

  • Taiz, L., and E. Zeiger. 2004. Fisiologia vegetal, 3rd ed. Porto Alegre, RS: Artmed Editora.

    Google Scholar 

  • Thorburn, P.J., I.K. Dart, I.M. Biggs, C.P. Baillie, M.A. Smith, and B.A. Keating. 2003. The fate of nitrogen applied to sugarcane by trickle irrigation. Irrigation Science 22: 201–209. doi:10.1007/s00271-003-0086-2.

    Article  Google Scholar 

  • Trivelin, P.C.O., M.W. Oliveira, A.C. Vitti, G.J.C. Gava, and J.A. Bendassolli. 2002. Perdas do nitrogênio da ureia no sistema solo-planta em dois ciclos de cana-de-açúcar. Pesquisa Agropecuária Brasileira 37: 193–201. doi:10.1590/S0100-204X2002000200011.

    Article  Google Scholar 

  • Wiedenfeld, B., and J. Enciso. 2008. Sugarcane responses to irrigation and nitrogen in semiarid South Texas. Agronomy Journal 100: 665–671. doi:10.2134/agronj2007.0286.

    Article  CAS  Google Scholar 

  • Wiedenfeld, R.P. 1995. Effects of irrigation and N fertilizer application on sugarcane yield and quality. Field Crops Research 43: 101–108. doi:10.1016/0378-4290(95)00043-P.

    Article  Google Scholar 

  • Van Dillewijn, C. 1952. Botanys of sugarcane. Waltham: Cronica Botanica Co.

    Google Scholar 

Download references

Acknowledgments

To São Paulo Technology Agency for Agribusiness (APTA—Jaú) for site and field work support; CNEN (National Nuclear Energy Commission) for financial scholarships, and the Stable Isotopes Laboratory—CENA/USP for scientific support. Project partially funded by FAPESP project 2008/56.147-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oriel Tiago Kölln.

Additional information

Part of master science project performed at Stable Isotopes Laboratory—CENA/USP.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kölln, O.T., de Castro Gava, G.J., Cantarella, H. et al. Fertigated Sugarcane Yield and Carbon Isotope Discrimination (Δ13C) Related to Nitrogen Nutrition. Sugar Tech 18, 391–400 (2016). https://doi.org/10.1007/s12355-015-0384-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-015-0384-z

Keywords

Navigation