Skip to main content

Advertisement

Log in

The Effect of Calcium and Silicon Foliar Fertilization in Sugar Beet

  • Short Communication
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

In this study we investigated the effect of calcium and silicon foliar fertilization on the sugar beet root yield and quality parameters. Study was conducted in 2010–2012 in the southeastern region of Poland, in Sahryń (50°41′N and 23°46′E). In the experiment two treatments of foliar fertilization were used: (1) in the stage of 4–6 sugar beet leaf–262.0 g Ca/ha, 79.9 g Si/ha, and 3 weeks later–524.0 g Ca/ha, 159.8 g Si/ha; and (2) in the stage of 4–6 sugar beet leaf–524.0 g Ca/ha, 1598 g Si/ha, 3 weeks later–524.0 g Ca/ha, 159.8 g Si/ha. Calcium and silicon foliar fertilization resulted in increase of: (1) the root yield (average for both treatments about 21.8 %); (2) the biological sugar yield (about 24.4 %); and (3) the technological yield of sugar (about 24.8 %) compared with the control treatment. The difference between treatments of fertilization was not significant. Foliar application of calcium and silicon had no significant effect on such sugar beet roots quality parameters features as content of sucrose, alpha-amino-nitrogen, potassium and sodium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Artyszak, A., D. Gozdowski, and K. Kucińska. 2014. The effect of foliar fertilization with marine calcite in sugar beet. Plant Soil Environment 60: 413–417.

    Google Scholar 

  • Bowen, P., J. Menzies, D. Ehret, L. Samuels, and A. Glass. 1992. Soluble silicon sprays inhibit powdery mildew development on grape leaves. Journal of the American Society for Horticultural Science 117: 906–912.

    CAS  Google Scholar 

  • Buchholz, K., B. Märländer, H. Puke, H. Glattkowski, and K. Thielecke. 1995. Neubewertung des technischen Wertes von Zuckerrüben. Zuckerindustrie 120: 113–121.

    CAS  Google Scholar 

  • Cai, K., D. Gao, J. Chen, and S. Luo. 2009. Probing the mechanisms of silicon—mediated pathogen resistance. Plant Signaling & Behavior 4: 1–3.

    Article  CAS  Google Scholar 

  • Casey, W.H., S.D. Kinrade, C.T.G. Knight, D.W. Rains, and E. Epstein. 2003. Aqueous silicate complexes in wheat, Triticum aestivum L. Plant, Cell and Environment 27: 51–54.

    Article  Google Scholar 

  • FAO 2006. World reference base for soil resources. World Soil Resources Reports No. 103. Rome.

  • Fauteux, F., W. Remus-Borel, J.G. Menzies, and R.R. Belanger. 2005. Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiology Letters 249: 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Gunes, A., A. Inal, E.G. Bagci, and D.J. Pilbeam. 2007. Silicon—mediated changes of some physiological and enzymatic parameters symptomatic for oxidative stress in spinach and tomato grown in sodic-B toxic soil. Plant and Soil 290: 103–114.

    Article  CAS  Google Scholar 

  • Guntzer, F., C. Keller, and J.-D. Meunier. 2012. Benefits of plant silicon for crops: a review. Agronomy for Sustainable Development 32: 201–213.

    Article  Google Scholar 

  • Gupta, U.C., and H. Solanki. 2013. Impact of boron deficiency on plant growth. International Journal of Bioassays 2: 1048–1050.

    CAS  Google Scholar 

  • Hellal, F.A., A.S. Taalab, and A.M. Safaa. 2009. Influence of nitrogen and boron nutrition on nutrient balance and sugar beet yield grown in calcareous soil. Ozean Journal of Applied Sciences 2: 1–10.

    Google Scholar 

  • Henriet, C., X. Draye, I. Oppitz, R. Swennen, and B. Delvaux. 2006. Effects, distribution and uptake of silicon in banana (Musa spp.) under controlled conditions. Plant and Soil 287: 359–374.

    Article  CAS  Google Scholar 

  • Hou, L., E. Szwonek, and S. Xing. 2006. Advances in silicon research of horticultural crops. Vegetable Crops Research Bulletin 64: 5–17.

    Google Scholar 

  • Kara, Z., and A. Sabir. 2010. Effects of HerbaGreen application on vegetative developments of some grapevine rootstocks during nursery propagation in glasshouse. In 2nd International Symposium on Sustainable Development, June 8–9 2010 Sarajevo: 127–132.

  • Kristek, A., B. Stojić, and S. Kristek. 2006. Effect of the foliar boron fertilization on sugar beet root yield and quality. Agriculture-Scientific and Professional Review 12: 1–7.

    Google Scholar 

  • Liang, Y., H. Hua, Y.-G. Zhu, J. Zhang, C. Cheng, and V. Romheld. 2006. Importance of plant species and external silicon concentration to active silicon uptake and transport. New Phytologist 172: 63–72.

    Article  CAS  PubMed  Google Scholar 

  • Ma, J.F., N. Mitani, S. Nagao, S. Konishi, K. Tamai, T. Iwashita, and M. Yano. 2004. Characterization of the silicon uptake system and molecular mapping of the silicon transporter gene in rice. Plant Physiology 136: 3284–3289.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma, J.F., and N. Yamaji. 2006. Silicon uptake and accumulation in higher plants. Trends in Plant Science 11: 392–397.

    Article  CAS  PubMed  Google Scholar 

  • Matichenkov, V.V., and D.V. Calvert. 2002. Silicon as a beneficial element for sugarcane. Journal of the American Society of Sugar Cane Technologists 22: 21–30.

    Google Scholar 

  • Mitani, N., and J.F. Ma. 2005. Uptake system of silicon in different plant species. Journal of Experimental Botany 56: 1255–1261.

    Article  CAS  PubMed  Google Scholar 

  • Perry, C.C., and T. Keeling-Tucker. 1998. Aspects of the bioinorganic chemistry of silicon in conjunction with the biometals calcium, iron and aluminium. Journal of Inorganic Biochemistry 69: 181–191.

    Article  CAS  PubMed  Google Scholar 

  • Raven, J.A. 2003. Cycling silicon—the role of accumulation in plants. New Phytologist 158: 419–421.

    Article  Google Scholar 

  • Sacała, E. 2009. Role of silicon in plant resistance to water stress. Journal of Elementology 14: 619–630.

    Google Scholar 

  • Trawczyński, C. 2013. The effect of foliar fertilization of preparation Herbagreen on potato yield. Ziemniak Polski 2: 29–33. (In Polish).

    Google Scholar 

  • Ugrinović, M., S. Oljača, M. Brdar-Jokanović, J. Zdravković, Z. Girek, and M. Zdravković. 2011. The effect of liquid and soluble fertilizers on lettuce yield. Contemporary Agriculture—The Serbian Journal of Agricultural Sciences 60: 110–115.

    Google Scholar 

  • Yamaji, N., N. Mitani, and J.F. Ma. 2008. A transporter regulating silicon distribution in rice shoots. Plant Cell 20: 1381–1389.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weihrauch, F., J. Schwarz, and A. Sterler. 2011. Downy mildew control in organic hops: how much copper is actually needed? Proceedings of the Scientific Commission CIH-IHB-IHGC; June 19–23; Lublin, Poland, The Scientific Commission CIH-IHB-IHGC: 75–78.

Download references

Acknowledgments

The authors thank to: Dr. Wacław Wiśniewski from KWS Polska Sp. z o.o., Mirosław Łakomy and Elżbieta Zając from KHBC Sp. z o.o. and Romuald Łuczak from NaturalCrop Sp. z o.o. for the assistance in conducting the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadiusz Artyszak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artyszak, A., Gozdowski, D. & Kucińska, K. The Effect of Calcium and Silicon Foliar Fertilization in Sugar Beet. Sugar Tech 18, 109–114 (2016). https://doi.org/10.1007/s12355-015-0371-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-015-0371-4

Keywords

Navigation