Skip to main content

Chitosan Cross-Linked Pentasodium Tripolyphosphate Micro/Nanoparticles Produced by Ionotropic Gelation


Chitosan cross-linked pentasodium tripolyphosphate particles were produced by ionotropic gelation. The aim of this study was to evaluate the influence of the molar mass and deacetylation degree of chitosan and of the concentration of pentasodium tripolyphosphate in the production of chitosan micro/nanoparticles. The obtained charge ratio (R±), mean particle size, surface electrical charge, polydispersity index, and tendency of particle aggregation were selected as dependent variables. Results demonstrated that stable particles exhibited a high zeta potential value, between +62 and +68 mV. Particles were produced in different size ranges controlling the R± between the positively charged chitosan and negatively charged pentasodium tripolyphosphate. Chitosan micro/nanoparticles were successfully prepared via the ionic gelation method controlling R±, therefore the association of an active ingredient to a micro/nanoparticle allows the molecule to intimately interact with specific structures, to overcome barriers and to prolong its residence time in the target. Chitosan cross-linked pentasodium tripolyphosphate particles are expected to be a good approach for active ingredients formulation in the agrofood sector and related industries.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  • Akbuga, J., and G. Durmaz. 1994. Preparation and evaluation of cross-linked chitosan microspheres containing furosemide. International Journal of Pharmaceutics 111: 217–222.

    Article  CAS  Google Scholar 

  • Bhumkar, D.R., and V.B. Pokharkar. 2006. Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate: A technical note. AAPS PharmSciTech 7: E50.

    Article  PubMed  Google Scholar 

  • Bokharaei, M., A. Margaritis, A. Xenocostas, and D.J. Freeman. 2011. Erythropoietin encapsulation in chitosan nanoparticles and kinetics of drug release. Current Drug Delivery 8: 164–171.

    Article  CAS  PubMed  Google Scholar 

  • Csaba, N., M. Koping-Hoggard, and M.J. Alonso. 2009. Ionically crosslinked chitosan/tripolyphosphate nanoparticles for oligonucleotide and plasmid DNA delivery. International Journal of Pharmaceutics 382: 205–214.

    Article  CAS  PubMed  Google Scholar 

  • da Silva, C.F., P. Severino, F. Martins, and M.H.A. Santana. 2011. Didanosine-loaded chitosan microespheres: Optimization of fabrication process. Latin America Journal of Pharmacy 30: 1037–1040.

    Google Scholar 

  • Elzatahry, A.A., M.S.M. Eldin, E.A. Soliman, and E.A. Hassan. 2009. Evaluation of alginate–chitosan bioadhesive beads as a drug delivery system for the controlled release of theophylline. Journal of Applied Polymer Science 111: 2452–2459.

    Article  CAS  Google Scholar 

  • Gan, Q., T. Wang, C. Cochrane, and P. McCarron. 2005. Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery. Colloids and Surfaces B 44: 65–73.

    Article  CAS  Google Scholar 

  • Grant, J., J. Cho, and C. Allen. 2007. Self-assembly and physicochemical and rheological properties of a polysaccharide-surfactant system formed from the cationic biopolymer chitosan and nonionic sorbitan esters (vol 22, pg 4327, 2006). Langmuir 23: 4688.

    Article  CAS  Google Scholar 

  • Hu, B., C. Pan, Y. Sun, Z. Hou, H. Ye, and X. Zeng. 2008. Optimization of fabrication parameters to produce chitosan-tripolyphosphate nanoparticles for delivery of tea catechins. Journal of Agriculture and Food Chemistry 56: 7451–7458.

    Article  CAS  Google Scholar 

  • Hudson, D., and A. Margaritis. 2014. Biopolymer nanoparticle production for controlled release of biopharmaceuticals. Critical Reviews in Biotechnology 34: 161–179.

    Article  CAS  PubMed  Google Scholar 

  • Inta, O., R. Yoksan, and J. Limtrakul. 2014. Hydrophobically modified chitosan: A bio-based material for antimicrobial active film. Materials Science and Engineering C 42: 569–577.

    Article  CAS  PubMed  Google Scholar 

  • Kaloti, M., and H.B. Bohidar. 2010. Kinetics of coacervation transition versus nanoparticle formation in chitosan-sodium tripolyphosphate solutions. Colloids and Surfaces B 81: 165–173.

    Article  CAS  Google Scholar 

  • Khan, N., D.J. Bharali, V.M. Adhami, I.A. Siddiqui, H. Cui, S.M. Shabana, S.A. Mousa, and H. Mukhtar. 2014. Oral administration of naturally occurring chitosan-based nanoformulated green tea polyphenol EGCG effectively inhibits prostate cancer cell growth in a xenograft model. Carcinogenesis 35: 415–423.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar, K., N. Dhawan, H. Sharma, S. Vaidya, and B. Vaidya. 2014. Bioadhesive polymers: Novel tool for drug delivery. Artificial Cells, Nanomedicine, and Biotechnology 42: 274–283.

    Article  CAS  PubMed  Google Scholar 

  • Li, F.Q., R.R. Ji, X. Chen, B.M. You, Y.H. Pan, and J.C. Su. 2010. Cetirizine dihydrochloride loaded microparticles design using ionotropic cross-linked chitosan nanoparticles by spray-drying method. Archives of Pharmacal Research 33: 1967–1973.

    Article  CAS  PubMed  Google Scholar 

  • Luo, Y., and Q. Wang. 2014. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. International Journal of Biological Macromolecules 64: 353–367.

    Article  CAS  PubMed  Google Scholar 

  • Nagda, C., N. Chotai, S. Patel, D. Nagda, U. Patel, and T. Soni. 2010. Chitosan microspheres of aceclofenac: In vitro and in vivo evaluation. Pharmaceutical Development and Technology 15: 442–451.

    Article  CAS  PubMed  Google Scholar 

  • Nagpal, K., S.K. Singh, and D.N. Mishra. 2010. Chitosan nanoparticles: A promising system in novel drug delivery. Chemical and Pharmaceutical Bulletin 58: 1423–1430.

    Article  CAS  PubMed  Google Scholar 

  • Nazar, H., D.G. Fatouros, S.M. van der Merwe, N. Bouropoulos, G. Avgouropoulos, J. Tsibouklis, and M. Roldo. 2011. Thermosensitive hydrogels for nasal drug delivery: The formulation and characterisation of systems based on N-trimethyl chitosan chloride. European Journal of Pharmaceutics and Biopharmaceutics 77: 225–232.

    Article  CAS  PubMed  Google Scholar 

  • Oyarzun-Ampuero, F.A., J. Brea, M.I. Loza, D. Torres, and M.J. Alonso. 2009. Chitosan-hyaluronic acid nanoparticles loaded with heparin for the treatment of asthma. International Journal of Pharmaceutics 381: 122–129.

    Article  CAS  PubMed  Google Scholar 

  • Patil, S.B., and K.K. Sawant. 2011. Chitosan microspheres as a delivery system for nasal insufflation. Colloids and Surfaces B 84: 384–389.

    Article  CAS  Google Scholar 

  • Radler, J.O., I. Koltover, A. Jamieson, T. Salditt, and C.R. Safinya. 1998. Structure and interfacial aspects of self-assembled cationic lipid-DNA gene carrier complexes. Langmuir 14: 4272–4283.

    Article  Google Scholar 

  • Rampino, A., M. Borgogna, P. Blasi, B. Bellich, and A. Cesaro. 2013. Chitosan nanoparticles: Preparation, size evolution and stability. International Journal of Pharmaceutics 455: 219–228.

    Article  CAS  PubMed  Google Scholar 

  • Saremi, S., F. Atyabi, S.P. Akhlaghi, S.N. Ostad, and R. Dinarvand. 2011. Thiolated chitosan nanoparticles for enhancing oral absorption of docetaxel: Preparation, in vitro and ex vivo evaluation. International Journal of Nanomedicine 6: 119–128.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shu, X.Z., and K.J. Zhu. 2002. The influence of multivalent phosphate structure on the properties of ionically cross-linked chitosan films for controlled drug release. European Journal of Pharmaceutics and Biopharmaceutics 54: 235–243.

    Article  CAS  PubMed  Google Scholar 

  • Souto, E.B., P. Severino, R. Basso, and M.H. Santana. 2013. Encapsulation of antioxidants in gastrointestinal-resistant nanoparticulate carriers. Methods in Molecular Biology 1028: 37–46.

    Article  CAS  PubMed  Google Scholar 

  • Sun, P., P. Li, Y.M. Li, Q. Wei, and L.H. Tian. 2011. A pH-sensitive chitosan-tripolyphosphate hydrogel beads for controlled glipizide delivery. Journal of Biomedical Materials Research. Part B: Applied Biomaterials 97: 175–183.

    Article  Google Scholar 

  • Sun, Y., L. Gu, Y. Gao, and F. Gao. 2010. Preparation and characterization of 5-Fluorouracil loaded chitosan microspheres by a two-step solidification method. Chemical and Pharmaceutical Bulletin 58: 891–895.

    Article  CAS  PubMed  Google Scholar 

  • Watts, P., L. Barrow, K.P. Steed, C.G. Wilson, R.C. Spiller, C.D. Melia, and M.C. Davies. 1992. The transit rate of different-sized model dosage forms through the human colon and the effects of a lactulose-induced catharsis. International Journal of Pharmaceutics 87: 215–221.

    Article  CAS  Google Scholar 

Download references


The authors acknowledge the financial support obtained from the Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP/Brazil) and the Conselho Nacional de Pesquisa (CNPq, Brazil). FCT (Fundação para a Ciência e a Tecnologia) from the Portuguese Ministry of Education and Science, and European Funds (FEDER and COMPETE) are also acknowledged under the reference PTDC/SAU-FAR/113100/2009.

Conflict of interest

The authors report no conflicts of interest.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Eliana B. Souto.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Severino, P., da Silva, C.F., da Silva, M.A. et al. Chitosan Cross-Linked Pentasodium Tripolyphosphate Micro/Nanoparticles Produced by Ionotropic Gelation. Sugar Tech 18, 49–54 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Chitosan
  • Pentasodium tripolyphosphate
  • Ionotropic gelation
  • Cross-linking
  • Polysaccharide