Skip to main content

Advertisement

Log in

Xylanase Production by Isolated Fungal Strain, Aspergillus fumigatus RSP-8 (MTCC 12039): Impact of Agro-industrial Material as Substrate

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

In the present investigation, the imperative role of agro-industrial biomass for improved xylanase production was evaluated using isolated fungal strain. This isolate was identified as Aspergillus fumigatus RSP-8 (MTCC 12039) based on morphological and 18S rRNA ribotyping and the organism was deposited in MTCC, IMTECH Chandigarh with accession number 12039. The isolated fungal strain is mesophilic in nature and produced maximum xylanase at 30 °C, at pH 7 and agitation speed of 150 rpm. Xylanase complex production titers differed with the nature and complexity of carbon source and other physiological growth parameters including aeration, growth temperature, physiological medium pH, initial inoculum levels, etc. Highest xylanase titers (73 U/mL) noticed with hemicellulose isolated from sorghum straw and least with ground nut cake as carbon source among tested agro materials such as rice bran, green gram husk, sorghum straw, groundnut cake and wheat bran. A variation of three fold enzyme titers was observed with different tested carbon sources. Supplementation of glucose as carbon source did not produce any xylanase with this fungal strain revealing the xylanase in this isolate is induced by the carbon source. Variation of hemicellulose concentration as carbon source during the fermentation altered the production xylanase titers. The study suggested that, in xylanase production by A. fumigatus RSP-8, one of the major limiting factors is substrate chemical complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bailey, M.J., P. Biely, and K. Poutanen. 1992. Laboratory testing of methods for assay of xylanase activity. Journal of Biotechnology 23: 257–270.

    Article  CAS  Google Scholar 

  • Bakir, U., S. Yavascaoglu, F. Guvenc, and A. Ersayin. 2001. An endo-1,4-xylanase from Rhizopus oryzae: Production, partial purification and biochemical characterization. Enzyme and Microbial Technology 29: 328–334.

    Article  CAS  Google Scholar 

  • Beg, Q.K., M. Kapoor, L. Mahajan, and G.S. Hoondal. 2001. Microbial xylanases and their industrial applications: A review. Applied Microbiology and Biotechnology 56: 326–338.

    Article  CAS  PubMed  Google Scholar 

  • Bhatia, L., S. Johri, and R. Ahmad. 2012. An economic and ecological perspective of ethanol production from renewable agro waste: a review. AMB Express 2: 65.

    Article  PubMed Central  PubMed  Google Scholar 

  • Chiranjeevi, T., G. Baby Rani, K. Radhika, R.S. Prakasham, and A. Uma. 2013. The effect of assorted pretreatments on cellulose of selected vegetable waste and enzymatic hydrolysis. Biomass and Bioenergy 49: 205–213.

  • Collins, T., C. Gerday, and G. Feller. 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiology Reviews 29: 3–2310.

    Article  CAS  PubMed  Google Scholar 

  • Dalton, L.J., L.C. Jorge, and J.G. Valéria. 2010. Extraction of wood Hemicellulose through NaOH leaching. Cerne 16: 423–429.

    Article  Google Scholar 

  • Darmarapu, N., R.S. Prakasham, A.V. Umakanth, A. Uma, and P.S. Rao. 2013. Sweet sorghum juice as an alternate substrate for fermentative hydrogen production: Evaluation of influencing parameters using DOE statistical approach. Sugar Tech 15(3): 338–344.

    Article  Google Scholar 

  • Driss, D., F. Bhiri, M. Siela, S. Bessess, S. Chaabouni, and R. Ghorbel. 2013. Improvement of breadmaking quality by xylanase GH11 from Enicillium Occitanis Pol6. Journal of Texture Studies 44: 75–84.

    Article  Google Scholar 

  • Haltrich, D., B. Nidetzky, K.D. Kulbe, W. Steiner, and S. Zupaneie. 1996. Production of fungal xylanases. Bioresource Technology 58: 137–161.

    Article  CAS  Google Scholar 

  • Harris, A.D., and C. Ramalingam. 2010. Xylanases and its application in food industry: A review. Journal of Experimental Sciences 1(7): 1.

    Google Scholar 

  • Juturu, V., and J.C. Wu. 2012. Microbial xylanases: Engineering, production and industrial applications. Biotechnology Advances 30: 1219–1227.

    Article  CAS  PubMed  Google Scholar 

  • Kermnický, L., and P. Biely. 1998. Disaccharides permeases: constituents of xylanolytic and mannanolytic systems of Aureobasidium pullulans. Biochimica et Biophysica Acta 1425: 560–566.

    Article  Google Scholar 

  • Kuhad, R.C., M. Manchanda, and A. Singh. 1998. Optimization of xylanase production by a hyperxylanolitic mutant strain of Fusarium oxysporum. Process Biochemistry 33: 641–647.

    Article  CAS  Google Scholar 

  • Kumar, R., and C.E. Wyman. 2008. The impact of dilute sulfuric acid on the selectivity of xylooligomer depolymerization to monomers. Carbohydrate Research 343(2): 290–300.

    Article  CAS  PubMed  Google Scholar 

  • Kundu, A., M. Karmakar, and R.R. Ray. 2012. Simultaneous production of animal feed enzymes (endoxylanase and endoglucanase) by Penicillium janthinellum from waste jute caddies. International Journal of Recycling of Organic Waste in Agriculture 1: 13.

    Article  Google Scholar 

  • Laxmi, G.S., U. Rajeswari, and R.S. Prakasham. 2012. Biosynthesis of xylobiose: a strategic way to enrich the value of oil palm empty fruit bunch fiber. Journal of Microbiology and Biotechnology 22(8): 1084.

    Article  Google Scholar 

  • Laxmi, G.S., T. Sathish, Ch. Subba Rao, P. Brahmaiah, M. Hymavathi, and R.S. Prakasham. 2008. Palm fiber as novel substrate for enhanced xylanase production by isolated Aspergillus sp. RSP-6. Current Trends in Biotechnology and Pharmacy 2(3): 447–455.

  • Maheswari, M.U., and T.S. Chandra. 2000. Production and potential applications of a xylanase from a new strain. World Journal of Microbiology & Biotechnology 16: 257–263.

    Article  CAS  Google Scholar 

  • Motta, F.L., C.C.P. Andrade, and M.H.A. Santana. 2013. A review of xylanase production by the fermentation of xylan: Classification, characterization and applications, sustainable degradation of lignocellulosic biomass-techniques, applications and commercialization. InTech. doi:10.5772/53544.

    Google Scholar 

  • Ninawe, S., and R.C. Kuhad. 2005. Use of xylan-rich cost effective agro-residues in the production of xylanase by Streptomyces cyaneus SN32. Journal of Applied Microbiology 99: 1141–1148.

    Article  CAS  PubMed  Google Scholar 

  • Prakasham, R.S., ChS Rao, and P.N. Sarma. 2006. Green gram husk: An inexpensive substrate for alkaline protease production by Bacillus sp. in solid-state fermentation. Bioresource Technology 97: 1449–1454.

    Article  CAS  PubMed  Google Scholar 

  • Prakasham, R.S., ChS Rao, R.S. Rao, and P.N. Sarma. 2005. Alkaline protease production by an isolated Bacillus circulans under solid-state fermentation using agroindustrial waste: Process parameters optimization. Biotechnology Progress 21: 1380–1388.

    Article  CAS  PubMed  Google Scholar 

  • Prakasham, R.S., ChS Rao, R.S. Rao, and P.N. Sarma. 2007. Enhancement of acid amylase production by an isolated Aspergillus awamori. Journal of Applied Microbiology 102: 204–211.

    Article  CAS  PubMed  Google Scholar 

  • Prakasham, R.S., D. Nagaiah, K.S. Vinutha, A. Uma, T. Chiranjeevi, A.V. Umakanth, P. Srinivasa Rao, and N. Yan. 2014. Sorghum biomass: A novel renewable carbon source for industrial bioproducts. Biofuels 5: 159–174.

    Article  CAS  Google Scholar 

  • Puls, J., and J. Schuseil. 1993. Chemistry of hemicelluloses: Relationship between hemicellulose structure and enzymes required for hydrolysis. London: Portland Press.

    Google Scholar 

  • Rao, ChS, T. Sathish, M. Mahalaxmi, G.S. Laxmi, R.S. Rao, and R.S. Prakasham. 2008. Modeling and optimization of fermentation factors for enhancement of alkaline protease production by isolated Bacillus circulans using feed-forward neural network and genetic algorithm. Journal of Applied Microbiology 104: 889–898.

    Article  CAS  PubMed  Google Scholar 

  • Repaske, D.R., and J. Adler. 1981. Change in intracellular pH of Escherichia coli mediates the chemo tactic response to certain attractants and repellents. Journal of Bacteriology 145(3): 1196–1208.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shojaosadati, S.A., and V. Babaeipour. 2002. Citric acid production from apple pomace in multilayer packed bed solid-state bioreactor. Process Biochemistry 37: 909–914.

    Article  CAS  Google Scholar 

  • Sikyta, B. 1983. Development of microbial process. Methods in Industrial Microbiology p 250–274.

  • Singh, A., A.B. Abidi, N.S. Darmawal, and A.K. Agarwal. 1991. Influence of nutritional factors on cellulase production from natural lignocellulosic residues by Aspergillus niger. Agricultural and Biological Research 7: 19–27.

    Google Scholar 

  • Sluiter, A., B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, and D. Crocker. 2012. LAP- determination of structural carbohydrates and lignin in biomas,Version 08-03-2012, NREL.

  • Srinivasan, K., and M. Radhakrishnan. 2010. Characterization of proton production and consumption associated with microbial metabolism. BMC Biotechnology 10: 2–10.

    Article  PubMed Central  PubMed  Google Scholar 

  • Suhaib, A.B., A.N. Kamili, and B.A. Ganai. 2012. Identification of some Aspergillus species isolated from Dal Lake, Kashmir by traditional approach of morphological observation and culture. African Journal of Microbiology Research 6(29): 5824–5827.

    Google Scholar 

  • Teather, R.M., and P.J. WOOD. 1982. Use of Congo Red-Polysaccharide Interactions in Enumeration and Characterization of Cellulolytic Bacteria from the Bovine Rumen. Applied and Environmental Microbiology 43(4): 777–780.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Watanabe, T. 2002. Pictorial atlas of soil and seed fungi: Morphologies of cultured fungi and key to species, Third Edition. Boca Raton: CRC Press LLC.

  • Wejse, P.L., K. Ingvorsen, and K.K. Mortensen. 2005. Salinity and temperature effects on accessibility of soluble and cross-linked insoluble xylans to endo-xylanases. IUBMB Life 57(11): 761–763.

    Article  CAS  PubMed  Google Scholar 

  • Wong, K.K., L.U. Tan, and J.N. Saddler. 1988. multiplicity of β-1, 4-xylanase in microorganisms: Functions and applications. Microbiological Reviews 52: 305–317.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yuan, Qi-P, J.-D. Wang, H. Zhang, and Z.-M. Qian. 2005. Effect of tempeprature shift on production of xylanase by Aspergillus niger. Process Biochemistry 40: 3255–3257.

    Article  CAS  Google Scholar 

  • Yuvraj, R.Kaur, S.K. Uppal, P. Sharma, and H.S. Oberoi. 2013. Chemical composition of sweet sorghum juice and its comparative potential of different fermentation processes for enhanced ethanol production. Sugar Tech 15(3): 305–310.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Director, CSIR-IICT Hyderabad, for providing facilities to carry out this work and Council of Scientific and Industrial Research, Government of India for award of Research Fellowship to K Ravi Chandra. The authors VVN Yaswanth and B Nikhila are thankful for financial support from JCERDC project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Prakasham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravichandra, K., Yaswanth, V.V.N., Nikhila, B. et al. Xylanase Production by Isolated Fungal Strain, Aspergillus fumigatus RSP-8 (MTCC 12039): Impact of Agro-industrial Material as Substrate. Sugar Tech 18, 29–38 (2016). https://doi.org/10.1007/s12355-014-0357-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-014-0357-7

Keywords

Navigation