Advertisement

Sugar Tech

, Volume 16, Issue 4, pp 356–365 | Cite as

Climate Change Scenarios and Their Impact on Water Balance and Sugarcane Yield in Southern Brazil

  • Dayana L. dos Santos
  • Paulo C. SentelhasEmail author
Research Article

Abstract

Sugarcane is one of the main extensive crops in Southern Brazil, covering around 8 million ha. The crop is mainly produced under rainfed conditions, which makes the sugarcane sector very susceptible to climate variability and change. The study of the agro-environmental vulnerability of the sugarcane crop is an essential aspect to determine the yield potential, the climatic risks and to conduct the crop planning at medium and long terms. Based on the economic and social importance of sugarcane crop for Southern Brazil and the expected future scenarios of climate change for this region, reported by the IPCC and the First Brazilian Report on Climate Change, the present study had as objectives to assess the impacts of different climate changes scenarios on the water balance and on the potential and actual yields for the main sugarcane production regions of the state of São Paulo, Brazil. For that, twelve climate change scenarios, with increasing temperatures and CO2 concentrations in the atmosphere, and varying changes in rainfall were generated for the years of 2030, 2060 and 2090. The results indicated that, even with the huge impact of climate change on the water balance of all locations, the potential and actual yields may increase substantially as a function of the combination of higher air temperatures, higher CO2 concentration and also better management practices in the future scenarios. By 2090, even with a higher water deficit, the sugarcane actual yield may increase by 82, 71, 51 and 59 %, respectively for Araçatuba, Assis, Jaboticabal and Piracicaba, which indicates an improvement on the water use efficiency. Based on that, sugarcane stands up as a very important crop to face climate change in Brazil and around the world.

Keywords

Global warming Agrometeorological model Sugarcane yield 

References

  1. Alvares, C.A., J.L. Stape, P.C. Sentelhas, and J.L.M. Gonçalves. 2013. Modeling monthly mean air temperature for Brazil. Theoretical and Applied Climatology 113: 407–427.CrossRefGoogle Scholar
  2. Camargo, A.P., F.R. Marin, P.C. Sentelhas, and A.G. Picini. 1999. Ajuste da equação de Thornthwaite para estimar a evapotranspiração potencial em climas áridos e superúmidos, com base na amplitude térmica diária. Revista Brasileira de Agrometeorologia 7(251–257).Google Scholar
  3. CONAB. (2012) Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira: cana-de-açúcar, segundo levantamento. Brasilia, 2012. Available at: http://www.conab.gov.br/OlalaCMS/uploads/arquivos/12_08_09_15_07_05_boletim_cana_portugues_-_agosto_2012_2o_lev.pdf (Accessed September 6, 2012).
  4. Cardozo, N.P., and P.C. Sentelhas. 2013. Climatic effects on sugarcane ripening under the influence of cultivars and crop age. Scientia Agricola 70: 449–456.Google Scholar
  5. Cavalcanti, I.F.A., N.J. Ferreira, M.G.A.J. Silva, M.A.F.S. Dias. 2009. Tempo e clima no Brasil. 463. São Paulo: Oficina de Textos.Google Scholar
  6. Challinor, A.J., and T.R. Wheeler. 2008. Crop yield reduction in the tropics under climate change: processes and uncertainties. Agricultural and Forest Meteorology 148: 343–356.CrossRefGoogle Scholar
  7. Doorenbos, J., and A.H. Kassam. 1979. Yield response to water. 139. Rome: FAO (Irrigation and Drainage paper, 33).Google Scholar
  8. Ferreira, E.A., I. Aspiazú, G. Concenço, A.F. Silva, A.A. Silva, L.L. Galon, and D.V. Silva. 2011. Evaluation and grouping of sugarcane in agreement with their physiology characteristics types. Revista TrópicaCiências Agrárias e Biológicas 5: 30-38.Google Scholar
  9. Fischer, G., M. Shah, and H. van Velthuizen. 2002. Climate change and agricultural vulnerability. 152. Johannesburg: IIASA.Google Scholar
  10. Gouvêa, J.R.F., P.C. Sentelhas, S.T. Gazzola, and M.C. Santos. 2009. Climate change and technological advances: impacts on sugarcane productivity in tropical Southern Brazil. Scientia Agricola 66: 593–605.CrossRefGoogle Scholar
  11. Ghini, R., E. Hamada, and W. Bettiol. 2008. Climate change and plant diseases. Scientia Agricola 68: 98–107.CrossRefGoogle Scholar
  12. Hoogenboom, G. 2000. Contribution of agrometeorology to the simulation of crop production and its applications. Agricultural and Forest Meteorology 103: 137–157.CrossRefGoogle Scholar
  13. Horikoshi, A.S., and G. Fisch. 2007. Balanço hídrico atual e simulações para cenários climáticos futuros no município de Taubaté, SP, Brasil. Revista Ambiente e Água 2: 33–46.CrossRefGoogle Scholar
  14. Ibarra-Montoya, J.L., R. Román, K. Gutiérrez, J. Gaxiola, V. Arias, and M. Bautista. 2011. Cambio em la cobertura y uso del suelo em el norte de Jalisco, México: Um análisis del futuro, em um contexto de cambio climático. Revista Ambiente e Água 6: 111–128.CrossRefGoogle Scholar
  15. Inman-Bamber, N.G., and D.M. Smith. 2005. Water relations in sugarcane and response to water deficit. Field Crops Research 92: 185–202.CrossRefGoogle Scholar
  16. IPCC. 2007. Intergovernmental Panel on Climate Change. Climate Change: The Physical Science Basis. Summary for Policymakers. Working Group I. http://ipccwg1.ucar.edu/wg1/Report/AR4WG1_Pub_SPM-v2.pdf (Accessed April 16, 2012).
  17. Knox, J.W., J.A. Rodríguez Díaz, D.J. Nixon, and M. Mkhwanazi. 2010. A preliminary assessment of climate change impacts on sugarcane in Swaziland. Agricultural Systems 103: 63–72.CrossRefGoogle Scholar
  18. Knox, J.W., T. Hess, A. Daccache, and T. Wheeler. 2012. Climate change impacts on crop productivity in Africa and South Asia. Environmental Research Letters 7: 1–8.CrossRefGoogle Scholar
  19. Li, Z., W.Z. Liu, X.C. Zhang, and F.L. Zheng. 2011. Assessing the site-specific impacts of climate change on hydrology, soil erosion and crop yields in the Loess Plateau of China. Climate Change 105: 223–242.CrossRefGoogle Scholar
  20. Liberato, A.M.L., and J.I.B. Brito. 2010. Influência de mudanças climáticas no balanço hídrico da Amazônia Ocidental. Revista Brasileira de Geografia Física 3: 170–180.Google Scholar
  21. Marin, F.R., M.L. Lopes-Assad, E.D. Assad, C.E. Vian, and M.C. Santos. 2008. Sugarcane crop efficiency in two growing seasons in São Paulo State, Brazil. Pesquisa Agropecuária Brasileira 43: 1449–1455.CrossRefGoogle Scholar
  22. Marin, F.R., and D.S.P. Nassif. 2013. Mudanças climáticas e a cana-de-açúcar no Brasil: fisiologia, conjuntura e cenário futuro. Revista Brasileira de Engenharia Agrícola e Ambiental 17: 232–239.CrossRefGoogle Scholar
  23. Marin, F.R., J.W. Jones, A. Singels, F. Royce, E.D. Assad, G.Q. Pellegrino, and F. Justino. 2013. Climate change impacts on sugarcane stainable yield in southern Brazil. Climate Change 117: 227–239.CrossRefGoogle Scholar
  24. Marks, D., G.A. King, and J. Dolph. 1993. Implications of climate change for water balance of the Columbia River basin, USA. Climate Research 2: 203–213.CrossRefGoogle Scholar
  25. Medeiros, Y.D.P. 2003. Análise dos impactos das mudanças climáticas em região semi-árida. Revista Brasileira de Recursos Hídricos 8: 127–136.Google Scholar
  26. Monteiro, L.A. 2012. Modelagem agrometeorológica como base para a definição de ambientes de produção para a cultura da cana-de-açúcar no Estado de São Paulo. 118. Piracicaba: Programa de Pós-Graduação em Física do Ambiente Agrícola - Universidade de São Paulo, Piracicaba.Google Scholar
  27. Monteiro, L.A., and P.C. Sentelhas. 2013. Potential and actual sugarcane yields in Southern Brazil as a function of climate conditions and crop management. Sugar Tech. doi: 10.1007/s12355-013-0275-0.Google Scholar
  28. Oliveira, L.J.C. 2007. Mudanças climáticas e seus impactos nas produtividades das culturas do feijão e milho no Estado de Minas Gerais. 67. Viçosa: Programa de Pós-Graduação em Meteorologia Agrícola—Universidade Federal de Viçosa.Google Scholar
  29. Pereira, A.R., L.R. Angelocci, and P.C. Sentelhas. 2002. Agrometeorologia: Fundamentos e aplicações práticas. 478. Guaíba: Agropecuária.Google Scholar
  30. Pérez, S., and E. Sierra. 2012. Changes in rainfall patterns in the eastern area of La Pampa province, Argentina. Revista Ambiente e Água 7: 24–35.CrossRefGoogle Scholar
  31. Prado, H. 2013. Pedologia Fácil: aplicações em solos tropicais. 284. . Piracicaba: Fundag.Google Scholar
  32. Rolim, G.S., P.C. Sentelhas, and V. Barbieri. 1998. Planilhas no ambiente Excel para os cálculos de balanços hídricos: normal, seqüencial, de cultura e de produtividade real e potencial. Revista Brasileira de Agrometeorologia 6: 133–137.Google Scholar
  33. Santos, M.C., P.C. Sentelhas, and F.R. Marin. 2006. Calibração do modelo agrometeorológico da FAO para a estimativa da produtividade potencial e real da cana-de-açúcar (Saccharum spp). In: SIICUSP. São Paulo: Universidade de São Paulo.Google Scholar
  34. Souza, A.P. 2007. A cana-de-açúcar e as mudanças climáticas: efeito de uma atmosfera enriquecida de CO2 sobre o crescimento, desenvolvimento e metabolismo de carboidratos de Saccharum spp. 85. Campinas: Programa de Pós-Graduação em Biologia Celular e Estrutural - Universidade Estadual de Campinas.Google Scholar
  35. Teruel, D.A., V. Barbieri, and L.A. Ferrari Júnior. 1997. Sugarcane leaf area index modeling under different soil water conditions. Scientia Agricola 54: 39–44.CrossRefGoogle Scholar
  36. Thornthwaite, C.W., and J.R. Mather. 1955. The water balance .104. New Jersey: Drexel Institute of Tecnology (Publications in Climatology).Google Scholar
  37. Thornthwaite, C.W. 1948. An approach toward a rational classification of climate. Geographical Review 38: 55–94.CrossRefGoogle Scholar
  38. Tubiello, F.N., M. Donatelli, C. Rosenzweig, and C.O. Stöckle. 2000. Effects of climate change and elevated CO2 on cropping systems: model predictions at two Italian locations. European Journal of Agronomy 13: 179–189.CrossRefGoogle Scholar
  39. Zullo, J., H.S. Pinto, E.D. Assad, and S.R.M. Evangelista. 2008. Potential economic impacts of global warming on two Brazilian commodities, according to IPCC prognostics. Terrae 3: 28–39.Google Scholar

Copyright information

© Society for Sugar Research & Promotion 2013

Authors and Affiliations

  1. 1.Department of Biosystems Engineering, ESALQUniversity of São PauloPiracicabaBrazil

Personalised recommendations