Skip to main content
Log in

Molecular Markers EST-SSRs for Genotype-Phenotype Association in Sugarcane

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Sugarcane supplies raw material for several by-products, speciality sugar and ethanol is highly productive, but presents high phenotypic variability due to its genetic complexity, polyploidy and gene duplication; these factors limit genetic advances and productivity gains. The application of linkage disequilibrium (LD)-based association mapping is an alternative powerful molecular tool to dissect and exploit the genetic diversity in sugarcane and greatly accelerating plant breeding marker-assisted selection (MAS) programs. However, the extent of genome-wide LD has not been determined in sugarcane. We select nine genes coding for agronomic traits of interest and primers EST–SSRs was obtained for application in 80 improved genotypes and in 16 non-improved genotypes with phenotype identified from vegetative growth, biomass accumulation and sugars was obtained 210 amplicons of which 115 were polymorphic, on average 23.2 alleles was obtained in the each primer combination and the polymorphism information content was between 0.48 and 0.69. The genotypic analysis structured five groups with genetic distance of ~0.8 between different groups. Genotype-phenotype expression was detected with allele-specific with distance 5–43 cM of agronomic trait. These ESTs–SSRs allele-specific can be appointed to the MAS in sugarcane plant breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aragon, C., L.C. Carvalho, J. Gonzalez, M. Escalona, and S. Amancio. 2009. Sugarcane (Saccharum sp. Hybrid) propagated in headspace renovating systems shows autotrophic characteristics and develop improved antioxidative response. Tropical Plant Biology 2: 38–50.

    Article  CAS  Google Scholar 

  • Butterfield, M.K., D’Hont, A, Berdind N. 2001. The sugarcane genome: a synthesis of current understanding, and lessons for breeding and biotechnology. In: Proceedings of the South African Sugar Technologists’ Association 75–80.

  • Brito, G.G., E.T. Caixeta, A.P. Gallina, E.M. Zambolim, L. Zambolim, V. Diola, and M.E. Loureiro. 2010. Inheritance of coffee leaf rust resistance and identification of AFLP markers linked to the resistance gene. Euphytica 173: 255–264.

    Article  Google Scholar 

  • Cai, Q., K. Aitken, H.H. Deng, X.W. Chen, C. Fu, P.A. Jackson, and C.L. Mcintyre. 2005. Verification of the introgression of Erianthus arundinaceus germplasm into sugarcane using molecular markers. Plant Breeding 124(4): 322–328.

    Article  CAS  Google Scholar 

  • Cesnik, R, Miocque J. 2004. Melhoramento na cana-de-açúcar. Embrapa Informação Tecnológica, Brasília 307.

  • Devarumath, R.M., S.B. Kalwade, P.G. Kawar, and K.V. Sushir. 2012. Assessment of genetic diversity in sugarcane germplasm Using ISSR and SSR markers. Sugar Tech 14(4): 334–344.

    Article  CAS  Google Scholar 

  • D’Hont, A., G.M. Souza, M. Menossi, M. Vincentz, M.A. Van-Sluys, J.C. Glaszmann, and E. Ulian. 2008. Sugarcane: a major source of sweetness, alcohol, and bio-energy 1. In Plant genetics and genomics: crops and models, ed. P.H. Moore, and R. Ming, 483–513. NewYork: Springer.

    Chapter  Google Scholar 

  • Dinant, S., and R. Lemoine. 2010. The phloem pathway: new issues and old debates. Comptes Rendus Biologies 333(4): 307–319.

    Article  CAS  PubMed  Google Scholar 

  • Duarte Filho, L.S.C., P.P. Silva, J.M. Santos, G.V.S. Barbosa, C.E. Ramalho-Neto, L. Soares, J.C.F. Andrade, and C. Almeida. 2010. Genetic similarity among genotypes of sugarcane estimated by SSR and coefficient of parentage. Sugar Tech 12(2): 145–149. doi:10.1007/s12355-010-0028-2.

    Article  CAS  Google Scholar 

  • Garsmeur, O., C. Charron, S. Bocs, V. Jouffe, S. Samain, A. Couloux, G. Droc, C. Zini, J.C. Glaszmann, M.A. Van-Sluys, A. D’Hont. 2011. High homologous gene conservation despite extreme autopolyploid redundancy in sugarcane. New Phytologist 189(2): 629–642. doi:10.1111/j.1469-8137.2010.03497.x.

    Google Scholar 

  • Groenewald, J.H., Botha F.C. 2001. Manipulating sucrose metabolism with a single enzyme: Pyrophosphate-dependent phosphofructokinase (PFP). Proceedings of the International Society for Sugarcane Technologists 75: 101–103.

    Google Scholar 

  • Horie, T., T. Kaneko, G. Sugimoto, S. Sasano, S.K. Panda, M. Shibasaka, and M. Katsuhara. 2011. Mechanisms of water transport mediated by PIP aquaporins and their regulation via Phosphorylation Events under salinity stress in barley roots. Plant and Cell Physiology 52(4): 663–675.

    Article  CAS  PubMed  Google Scholar 

  • Jain, R., S.N. Singh, S. Solomon, A. Chandra. 2010. Potential regulatory role of gibberellic acid on sprouting and early stalk growth of sugarcane. Guangxi Agricultural Sciences 41(9): 1025–1028.

    Google Scholar 

  • Keb-Llanes, M., G. González, B. Chi-Manzanero, and D. Infante. 2002. A rapid and simple method for small-scale DNA extraction in agavaceae and other tropical plants. Plant Molecular Biology Reporter 20: 299.

    Article  Google Scholar 

  • Lam, E., J. Shine Jr, J. Da Silva, M. Lawton, S. Bonos, M. Calvino, H. Carrer, M.C. Silva-Filho, N. Glynn, Z. Helsel, J. Ma, E. Richard Jr, G. Souza, and R. Ming. 2009. Improving sugarcane for biofuel: engineering for an even better feedstock. Global Change Biology Bioenergy 1: 251–255.

    Article  CAS  Google Scholar 

  • Lee, S., K. Jung, G. An, and Y. Chung. 2004. Isolation and characterization of a rice cysteine protease gene, OsCP1, using T-DNA gene-trap system. Plant Molecular Biology 54(5): 755–765. doi:10.1023/B:PLAN.0000040904.15329.29.

    Article  CAS  PubMed  Google Scholar 

  • Liu, P., Y. Que, and Y. Pan. 2011. Highly polymorphic microsatellite DNA markers for sugarcane germplasm evaluation and variety identity testing. Sugar Tech 13(2): 129–136. doi:10.1007/s12355-011-0077-1.

    Article  Google Scholar 

  • Ma, S., T.M. Quist, S.A. Ulanov, R. Joly, and H.J. Bohnert. 2004. Loss of TIP1;1 aquaporin in Arabidopsis leads to cell and plant death. The Plant Journal 40: 845–859.

    Article  CAS  PubMed  Google Scholar 

  • Maia, L.C., D.A. Palmieri, V.Q. Souza, M.M. Kopp, F.I.F. Carvalho, and A.C. Oliveira. 2008. SSR Locator: tool for simple sequence repeat discovery integrated with primer design and PCR simulation. International Journal of Plant Genomics 2008: 9. doi:10.1155/2008/412696.

    Article  Google Scholar 

  • Martos, V., C. Royo, Y. Rharrabti, and L.F.G. Moral. 2005. Using AFLPs to determine phylogenetic relationships and genetic erosion in durum wheat cultivars released in Italy and Spain throughout the 20th century. Field Crops Research 91: 107–116.

    Article  Google Scholar 

  • McIntyre, C.L., M. Jackson, G.M. Cordeiro, O. Amouyal, S. Hermann, K.S. Aitken, F. Eliott, R.J. Henry, R.E. Casu, and G.D. Bonnett. 2006. The identification and characterization of alleles of sucrose phosphate synthase gene family III in sugarcane. Molecular Breeding 18: 39–50. doi:10.1007/s11032-006-9012-7.

    Article  CAS  Google Scholar 

  • Nei, M. 1972. Genetic distance between populations. American Naturalist 106: 283–292.

    Article  Google Scholar 

  • Oliveira, K.M., L.R. Pinto, T.G. Marconi, G.R.A. Maragarido, M.M. Pastina, L.H.M. Teixeira, A.V. Figueira, E.C. Ulian, A.A.F. Garcia, and A.P. Souza. 2007. Functional integrated genetic linkage map based on EST-markers for a sugarcane (Saccharum spp.) commercial cross. Molecular Breeding 20(3): 189–208.

    Article  CAS  Google Scholar 

  • Prasad, M., R.K. Varshney, J.K. Roy, H.S. Balya, and P.K. Gupta. 2000. The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theoretical and Applied Genetics. 100(3-4): 584–592.

    CAS  Google Scholar 

  • Pinto, L.R., K.M. Oliveira, T. Marconi, A.A.F. Garcia, E.C. Ulian, and A.P. De Souza. 2006. Characterization of novel sugarcane expressed sequence tag microsatellites and their comparison with genomic SSRs. Plant Breeding 125(4): 378–384.

    Article  CAS  Google Scholar 

  • Rae, A.L., M.A. Jackson, C.H. Nguyen, and G.D. Bonnett. 2009. Functional specialization of vacuoles in sugarcane leaf and stem. Tropical Plant Biology 2: 13–22.

    Article  CAS  Google Scholar 

  • Sachdeva, M., S. Bhatia, and S.K. Batta. 2011. Sucrose accumulation in sugarcane: a potential target for crop improvement. Acta Physiologiae Plantarum 33(5): 1571–1583. doi:10.1007/s11738-011-0741-9.

    Article  CAS  Google Scholar 

  • Schröder, R., R.G. Atkinson, and R.J. Redgwell. 2009. Re-interpreting the role of endo-b-mannanases as mannan endotransglycosylase/hydrolases in the plant cell wall. Annals of Botany 104(2): 1–8.

    Google Scholar 

  • Silva, D.C., M.C.P. Souza, L.S.C. Duarte Filho, J.M. Santos, G.V.S. Barbosa, and C. Almeida. 2012. New Polymorphic EST–SSR Markers in Sugarcane. Sugar Tech 14(4): 357–363.

    Article  CAS  Google Scholar 

  • Singh, D. 1981. The relative importance of characters affecting genetic divergence. The Indian Journal of Genetic and Plant Breeding 41: 237–245.

    Google Scholar 

  • Stephen, P., S. Ficklin, F. Luo, and F.A. Feltus. 2010. The association of multiple interacting genes with specific phenotypes in rice using gene coexpression networks. Plant Physiology 154(1): 13–24. doi:10.1104/pp.110.159459.

    Article  Google Scholar 

  • Suzuki, J., M.A. Mutton, M.I.T. Ferro, M.V.F. Lemos, J.M. Pizauro, M.J.R. Mutton, and S.M.Z. Di Mauro. 2003. Putative pyrophosphate phosphofructose 1-kinase genes identified in sugarcane may be getting energy from pyrophosphate. Genetics and Molecular Research 2(4): 376–382.

    CAS  PubMed  Google Scholar 

  • Swapna, M., N. Sivaraju, K. Singh, T. Mohapatra, and R.K. Sharma. 2011. Single-strand conformational polymorphism of EST–SSRs: a potential tool for diversity analysis and varietal identification in sugarcane. Plant Molecular Biology Reporter 29: 505–513.

    Article  Google Scholar 

  • Ukoskit, K., P. Thipmongkolcharoen, and P. Chatwachirawong. 2012. Novel expressed sequence tag-simple sequence repeats (EST–SSR) markers characterized by new bioinformatic criteria reveal high genetic similarity in sugarcane (Saccharum spp.) breeding lines. African Journal of Biotechnology 11(6-19): 1337–1363.

    CAS  Google Scholar 

  • Wang, J., B. Roe, S. Macmil, Q. Yu, J. Murray, H. Tang, C. Chen, F. Najar, G. Wiley, J. Bowers, M. Van Sluys, D. Rokhsar, M. Hudson, S. Moose, A. Paterson, and R. Ming. 2010. Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes. BMC Genomics 11: 261.

    Article  PubMed Central  PubMed  Google Scholar 

  • Weir, B.S. 1996. Genetic data analysis, II ed, 445. Sunderland: Sinauer Associates. rev. and exp.

    Google Scholar 

  • Witt, S.R., and E.R. Buckler. 2003. Using natural allelic diversity to evaluate gene function. Methods in Molecular Biology 236: 123–139.

    Google Scholar 

  • Yu, J., G. Pressoir, W.H. Briggs, I. Vroh Bi, M. Yamasaki, J.F. Doebley, M.D. McMullen, B.S. Gaut, D.M. Nielsen, J.B. Holland, S. Kresovich, and E.S. Buckler. 2006. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics 38(2): 203–208.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

To CNPq and FAPERJ for financial support and for providing RIDESA genetic resource.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valdir Diola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diola, V., Barbosa, M.H.P., Veiga, C.F.M. et al. Molecular Markers EST-SSRs for Genotype-Phenotype Association in Sugarcane. Sugar Tech 16, 241–249 (2014). https://doi.org/10.1007/s12355-013-0268-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-013-0268-z

Keywords

Navigation